UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in MAT-INF 4130 - Numerical linear algebra
Day of examination: 12 December 2014
Examination hours: 0900-1300
This problem set consists of 3 pages.
Appendices: None
Permitted aids: None

> Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All 9 part questions will be weighted equally.

Problem 1 Gauss-Seidel iteration

For a matrix $A \in \mathbb{R}^{n, n}$ with non-zero diagonal elements and vector $\boldsymbol{b} \in \mathbb{R}^{n}$, the Gauss-Seidel iteration for solving $A \boldsymbol{x}=\boldsymbol{b}$ is

$$
L \boldsymbol{x}_{k+1}=\boldsymbol{b}-U \boldsymbol{x}_{k}, \quad k=0,1,2, \ldots,
$$

with $\boldsymbol{x}_{0} \in \mathbb{R}^{n}$ some initial guess, and $L, U \in \mathbb{R}^{n, n}$ the lower triangular and strictly upper triangular parts of A :

$$
l_{i j}=\left\{\begin{array}{ll}
a_{i j}, & j \leq i ; \\
0, & j>i,
\end{array} \quad u_{i j}= \begin{cases}0, & j \leq i ; \\
a_{i j}, & j>i .\end{cases}\right.
$$

1a
By expressing the iteration in the form

$$
\boldsymbol{x}_{k+1}=G \boldsymbol{x}_{k}+\boldsymbol{c}
$$

derive a sufficient conditon for convergence in terms of $\|G\|$ for some operator norm \| $\cdot \|$.

1b
If

$$
A=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]
$$

how much does the error reduce in the ∞-norm after k iterations?
(Continued on page 2.)

1c

Write a matlab program for the Gauss-Seidel method applied to a matrix $A \in \mathbb{R}^{n, n}$ and right-hand side $\boldsymbol{b} \in \mathbb{R}^{n}$. Use the ∞-norm of the difference $\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}$ as the stopping criterion, as well as a maximum number of iterations. Try to write the routine without the storage of any vectors or matrices except the input initial guess \boldsymbol{x} which can be overwritten with the approximate solution.

Problem 2 Least squares

2 a

Suppose $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ with $\|\boldsymbol{x}\|_{2}=\|\boldsymbol{y}\|_{2}$ and $\boldsymbol{x} \neq \boldsymbol{y}$. Show that the Householder transformation

$$
H=I-2 \frac{\boldsymbol{v} \boldsymbol{v}^{T}}{\boldsymbol{v}^{T} \boldsymbol{v}}
$$

where $\boldsymbol{v}=\boldsymbol{x}-\boldsymbol{y}$, results in

$$
H \boldsymbol{x}=\boldsymbol{y} .
$$

2b

Let

$$
A=\left[\begin{array}{cc}
2 & 0 \\
2 & -1 \\
1 & -1
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{l}
3 \\
0 \\
3
\end{array}\right] .
$$

Compute a Householder transformation H such that the first column of $H A$ has a zero in the last two positions.

2c

Use H to find a $Q R$ decomposition of A and a corresponding $Q R$ factorization, $A=Q_{1} R_{1}$.

2d

Use Q_{1} and R_{1} to find the least squares soluton $\boldsymbol{x} \in \mathbb{R}^{2}$ to $A \boldsymbol{x} \approx \boldsymbol{b}$ (hint: you can use the fact that the normal equations are $A^{T} A \boldsymbol{x}=A^{T} \boldsymbol{b}$).

Problem 3 Eigenvalues

Let A be the matrix

$$
\left[\begin{array}{cc}
4 & -4 \\
-1 & 4
\end{array}\right] .
$$

3a

Find the eigenvalues and eigenvectors of A.

3b

Consider the iteration $\boldsymbol{z}_{k}=A \boldsymbol{z}_{k-1}$, for $k=1,2,3, \ldots$, with $\boldsymbol{z}_{0} \in \mathbb{R}^{2}$, and let $\boldsymbol{x}_{k}=\boldsymbol{z}_{k} /\left\|\boldsymbol{z}_{k}\right\|_{2}$. What does \boldsymbol{x}_{k} converge to (mathematically) if (i) $\boldsymbol{z}_{0}=[2,0]^{T}$? (ii) $\boldsymbol{z}_{0}=[2,1]^{T}$?

Good luck!

