UNIVERSITY OF OSLO

Faculty of Mathematics and Natural
 Sciences

Examination in MAT3110/4110 - Introduction to numerical analysis
Day of examination: Tuesday, November 29th., 2022
Examination hours: 15:00-19:00
This problem set consists of 7 pages.
Appendices: Error formulas.
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

Let

$$
u(x)=x^{2} \quad v(x)=a x+b, \quad x \in[0,1]
$$

where a and b are constants. Determine a and b such that the L^{2} distance $\|u-v\|_{L^{2}(0,1)}$ is minimal. Draw the graphs of u and v.

Løsningsforslag: We have

$$
\begin{aligned}
(u(x)-v(x))^{2} & =\left(x^{2}-(a x+b)\right)^{2} \\
& =x^{4}-2 x^{2}(a x+b)+(a x+b)^{2} \\
& =x^{4}-2 a x^{3}-2 b x^{2}+a^{2} x^{2}+2 a b x+b^{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\|u-v\|_{2}^{2} & =\int_{0}^{1} x^{4}-2 a x^{3}-2 b x^{2}+a^{2} x^{2}+2 a b x+b^{2} d x \\
& =\frac{1}{5}-\frac{1}{2} a-\frac{2}{3} b+\frac{1}{3} a^{2}+a b+b^{2}=: g(a, b) . \\
\frac{\partial g}{\partial a} & =-\frac{1}{2}+\frac{2}{3} a+b, \quad \frac{\partial g}{\partial b}=-\frac{2}{3}+a+2 b .
\end{aligned}
$$

Solving for these to be zero,

$$
\begin{aligned}
\frac{2}{3} a+b & =\frac{1}{2} \\
a+2 b & =\frac{2}{3}
\end{aligned}
$$

gives

$$
a=1 \quad b=-\frac{1}{6} .
$$

Problem 2

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(y)=\frac{c}{1+y^{2}}, \quad \text { where } c \text { is a positive constant. }
$$

$2 a$

Show that f is a contraction on \mathbb{R} if $c<c_{0}$, where

$$
c_{0}=\frac{8 \sqrt{3}}{9} \approx 1.54
$$

You don't have to show the " \approx ".

Løsningsforslag: We need to show that $\left|f^{\prime}(y)\right|<1$.

$$
f^{\prime}(y)=-2 c \frac{y}{\left(1+y^{2}\right)^{2}}
$$

To find the maximum we differentiate once more

$$
\begin{aligned}
\frac{d}{d y} \frac{y}{\left(1+y^{2}\right)^{2}} & =\frac{\left(1+y^{2}\right)^{2}-4 y^{2}\left(1+y^{2}\right)}{\left(1+y^{2}\right)^{4}} \\
& =\frac{\left(1-y^{2}\right)^{2}-4 y^{4}}{\left(1+y^{2}\right)^{4}}
\end{aligned}
$$

Therefore $\left|f^{\prime}(y)\right|$ will have max if $1-y^{2}=2 y^{2}$, i.e., $y= \pm 1 / \sqrt{3}$. Therefore

$$
\left|f^{\prime}(y)\right| \leq c \frac{18}{16 \sqrt{3}}=\frac{c}{c_{0}}
$$

2b

Assume that $c=c_{0} / 2$, we wish to find an approximation to the solution of $y=f(y)$, accurate to 17 decimal places. Explain how you could do this
without using the "abcd-formula".

Løsningsforslag: f is a contraction with $L=1 / 2$, we choose $y_{0}=0$, in a simple iteration; $y_{n+1}=f\left(y_{n}\right)$, which gives $0<y_{1}=c<1$. We have the error formula

$$
\left|y_{n}-y\right| \leq \frac{L^{n}}{1-L}\left|y_{1}-y_{0}\right|=2^{-(n-1)}
$$

We must choose n such that

$$
2^{-(n-1)} \leq \frac{1}{2} \cdot 10^{-17} \text { i.e., } \quad 2^{n} \geq 10^{17}
$$

which is satisfied for $n>56.5$.

2c

Consider the initial value problem

$$
\begin{equation*}
y^{\prime}(t)=g(y), \quad y(0)=0, \quad g(y)=\frac{1}{1+y^{2}} \tag{1}
\end{equation*}
$$

We wish to find an approximation to $y(t)$ for $t \in[0,1]$, and set $\Delta t=1 / N$ for some integer $N \geq 1$. We use the implicit scheme

$$
y_{i+1}=y_{i}+\frac{\Delta t}{2}\left(g\left(y_{i}\right)+g\left(y_{i+1}\right)\right), \quad i=0,1, \ldots, N-1
$$

Using pseudo-code explain how you would implement this scheme. (Make sure your implementation is well-defined).

```
Løsningsforslag: Here is a Matlab version
N=50; T=1; dt=T/N;
y0=0;
g=@(y) 1./(1+y.^2);
y=zeros(1,N+1); t=linspace(0,T,N+1);
y(1)=y0;
tol=0.5*1e-16;
for i=2:N+1
    z=y(i-1)+0.5*dt*g(y(i-1));
    yn=y(i-1)+dt*g(y(i-1)); % initial guess
    ynn=z+0.5*dt*g(yn);
    n=1;
    while (abs(yn-ynn)>tol)&&(n<57)
        % fixpoint iteration to find y_{i}
        % know that (from a) 57 iterations suffice
        n=n+1;
        yn=ynn;
        ynn=z+0.5*dt*g(yn);
    end
    y(i)=ynn;
end
```


2d

The truncation error τ_{i} is defined by

$$
\tau_{i}=\frac{y\left(t_{i+1}\right)-y\left(t_{i}\right)}{\Delta t}-\frac{1}{2}\left(g\left(y\left(t_{i+1}\right)\right)+g\left(y\left(t_{i}\right)\right)\right)
$$

where $y(t)$ is the exact solution of (1) and $t_{i}=i \Delta t$. Show that the truncation error satisfies

$$
\left|\tau_{i}\right| \leq \frac{\Delta t^{2}}{12} M
$$

where

$$
M=\left\|g^{\prime \prime} g^{2}+\left(g^{\prime}\right)^{2} g\right\|_{\infty}
$$

What is the convergence order of this method?
Løsningsforslag: We get that

$$
\tau_{i}=\frac{1}{\Delta t}\left(\int_{t_{i}}^{t_{i+1}} g(y(t)) d t-\frac{\Delta t}{2}\left(g\left(y\left(t_{i}\right)\right)+g\left(y\left(t_{i+1}\right)\right)\right)\right)
$$

We recognise the error of the trapezoidal rule as

$$
\int_{t_{i}}^{t_{i+1}} g(y(t)) d t-\frac{\Delta t}{2}\left(g\left(y\left(t_{i}\right)\right)+g\left(y\left(t_{i+1}\right)\right)\right) \leq \frac{\Delta t^{3}}{12} \max _{t}\left|\frac{d^{2}}{d t^{2}} g(y(t))\right|
$$

Now we have

$$
\begin{aligned}
\frac{d}{d t} g(y(t)) & =g^{\prime} g \\
\frac{d^{2}}{d t^{2}} g(y(t)) & =g^{\prime \prime} g^{2}+\left(g^{\prime}\right)^{2} g
\end{aligned}
$$

Since we know that the error of the method is bounded by $K \max _{i}\left|\tau_{i}\right|=$ $\mathcal{O}\left(\Delta t^{2}\right)$ the method is second order.

Problem 3

Let L^{n} be an $n \times n$ lower triangular non-singular matrix.

3a

Show that $\left(L^{2}\right)^{-1}$ is lower triangular. If L^{n+1} is a general non-singular $(n+1) \times(n+1)$ lower triangular matrix written as

$$
L^{n+1}=\left(\begin{array}{cc}
L^{n} & \mathbf{0} \\
\boldsymbol{r}^{\top} & \alpha
\end{array}\right)
$$

where L_{n} is an $n \times n$ non-singular lower triangular matrix, \boldsymbol{r} is an $n \times 1$ vector and $\alpha \neq 0$ is a number. Show that the inverse $\left(L^{n+1}\right)^{-1}$ is given by

$$
\left(L^{n+1}\right)^{-1}=\left(\begin{array}{cc}
\left(L^{n}\right)^{-1} & \mathbf{0} \tag{2}\\
-\frac{1}{\alpha} \boldsymbol{r}^{\top}\left(L^{n}\right)^{-1} & \frac{1}{\alpha}
\end{array}\right)
$$

and conclude that $\left(L^{n}\right)^{-1}$ is lower triangular for any $n \geq 0$.

Løsningsforslag: We compute

$$
L^{n+1}\left(L^{n+1}\right)^{-1}=\left(\begin{array}{cc}
L^{n} & \mathbf{0} \\
\boldsymbol{r}^{\top} & \alpha
\end{array}\right)\left(\begin{array}{cc}
\left(L^{n}\right)^{-1} & \mathbf{0} \\
-\frac{1}{\alpha} \boldsymbol{r}^{\top}\left(L^{n}\right)^{-1} & \frac{1}{\alpha}
\end{array}\right)=\left(\begin{array}{cc}
I_{n} & \mathbf{0} \\
\mathbf{0}^{\top} & 1
\end{array}\right)
$$

If $\left(L^{2}\right)^{-1}$ is lower triangular, then $\left(L^{3}\right)^{-1}$ is lower triangular etc.

3b

Let L^{k} be as above, and $\boldsymbol{y} \in \mathbb{R}^{k}, k \geq 2$. How many operations (additions, subtractions, multiplications or divisions) do you need to compute the product $\boldsymbol{y}^{\top} L^{k}$ as efficiently as possible?

Løsningsforslag: Since L^{k} is lower triangular, $L_{j i}^{k}=0$ for $i>j$. We have that for $i=1, \ldots, k$

$$
\left(\boldsymbol{y}^{\top} L^{k}\right)_{i}=\sum_{j=1}^{k} y_{j} L_{j i}^{k}=\sum_{j=i}^{k} y_{j} L_{j i}^{k}
$$

For each i we have $k-i+1$ multiplications and $k-i$ additions. This gives a total of

$$
\sum_{i=1}^{k} 2 k-2 i+1=2 k^{2}-2 \frac{k(k+1)}{2}+k=k^{2} \quad \text { operations. }
$$

3c

Based on (2), formulate an algorithm which, given a non-singular lower triangular $n \times n$ matrix A, computes its inverse B.

Løsningsforslag: In Matlab

```
for i=1:n
    B(i,i)=1/A(i,i);
    for j=1:i-1
        B(i,j:i-1)=-B(i,i)*A(i,j:i-1)*B(j:i-1,j);
    end
end
```

with inner loop spelled out

```
for i=1:n
    B(i,i)=1/A(i,i);
    for j=1:i-1
        B (i,j)=0;
        for k=j:i-1
                B(i,j)=B(i,j)+A(i,k)*B(k,j);
            end
        B(i,j)=-B(i,j)*B(i,i);
    end
end
```


Problem 4

Let $\left\{X_{i}\right\}_{i=1}^{\infty}$ be a sequence of independent random variables, uniformly distributed in the interval $[0,1]$.

4a

Explain why

$$
\lim _{M \rightarrow \infty} \frac{4}{M} \sum_{i=1}^{M} \sqrt{1-X_{i}^{2}}=\pi \quad \text { almost surely. }
$$

Løsningsforslag: We have that

$$
\frac{4}{M} \sum_{i=1}^{M} \sqrt{1-X_{i}^{2}}
$$

is the Monte-Carlo approximation to the integral

$$
4 \int_{0}^{1} \sqrt{1-x^{2}} d x=\pi
$$

We know that Monte-Carlo approximations converge almost surely.

4b

How large must you choose M if you want to be 90% sure that

$$
\left|\frac{4}{M} \sum_{i=1}^{M} \sqrt{1-X_{i}^{2}}-\pi\right|<0.05 ?
$$

Løsningsforslag: We have $\max f-\min f=4$. We choose M so that

$$
\frac{4}{0.05^{2} M} \leq 0.1 \quad \Rightarrow \quad M \geq 16000
$$

Some useful error formulas

Simple iteration, finding $\xi=f(\xi)$:

$$
\left|x_{n}-\xi\right| \leq \frac{L^{n}}{1-L}\left|x_{0}-x_{1}\right|, \quad 1>L \geq\left|f^{\prime}(x)\right|
$$

Trapezoid rule: $\left|E_{1}(f)-\int_{a}^{b} f(x) d x\right| \leq \frac{(b-a)^{3}}{12} M_{2}$,
Simpson's rule: $\left.\left|E_{2}(f)-\int_{a}^{b} f(x) d x\right| \leq \frac{(b-a)^{5}}{2880} M_{4},\right\}$

$$
M_{k}=\max \left|f^{(k)}\right|
$$

Monte Carlo integration:

$$
\mathcal{E}_{M}(f) \leq \frac{\left(\max _{\boldsymbol{x} \in[0,1]^{d}}\{f(\boldsymbol{x})\}-\min _{\boldsymbol{x} \in[0,1]^{d}}\{f(\boldsymbol{x})\}\right)}{2 \sqrt{M}}
$$

and

$$
\begin{aligned}
& \operatorname{Prob}\left(\left|I_{M}(f)-\int_{[0,1]^{d}} f(\boldsymbol{x}) d \boldsymbol{x}\right| \geq \varepsilon\right) \\
& \leq \frac{\left(\max _{\boldsymbol{x} \in[0,1]^{d}}\{f(\boldsymbol{x})\}-\min _{\boldsymbol{x} \in[0,1]^{d}}\{f(\boldsymbol{x})\}\right)^{2}}{4 \varepsilon^{2} M}
\end{aligned}
$$

Polynomial interpolation:

$$
\left|p_{n}(x)-f(x)\right| \leq \frac{M_{n+1}}{(n+1)!} \prod_{i=0}^{n}\left|x-x_{i}\right|
$$

Error for a one-step method; $y_{n+1}=y_{n}+\Delta t \Phi\left(y_{n}, \cdots\right)$ for the ODE $y^{\prime}=f(y)$:

$$
\left|e_{n}\right| \leq \frac{\max _{i}\left|\tau_{i}\right|}{L_{\Phi}}\left(e^{L_{\Phi} t_{n}}-1\right)
$$

