UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in	MAT3110/4110 - Introduction to numerical analysis
Day of examination:	Tuesday, November 29th., 2022
Examination hours:	15:00-19:00
This problem set consists of 7 pages.	
Appendices:	Error formulas.
Permitted aids:	None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

Let

$$u(x) = x^2$$
 $v(x) = ax + b, x \in [0, 1],$

where a and b are constants. Determine a and b such that the L^2 distance $||u - v||_{L^2(0,1)}$ is minimal. Draw the graphs of u and v.

Løsningsforslag: We have

$$(u(x) - v(x))^{2} = (x^{2} - (ax + b))^{2}$$

= $x^{4} - 2x^{2}(ax + b) + (ax + b)^{2}$
= $x^{4} - 2ax^{3} - 2bx^{2} + a^{2}x^{2} + 2abx + b^{2}$.

Hence

$$\begin{aligned} \|u - v\|_2^2 &= \int_0^1 x^4 - 2ax^3 - 2bx^2 + a^2x^2 + 2abx + b^2 \, dx \\ &= \frac{1}{5} - \frac{1}{2}a - \frac{2}{3}b + \frac{1}{3}a^2 + ab + b^2 =: g(a, b). \\ &\frac{\partial g}{\partial a} = -\frac{1}{2} + \frac{2}{3}a + b, \quad \frac{\partial g}{\partial b} = -\frac{2}{3} + a + 2b. \end{aligned}$$

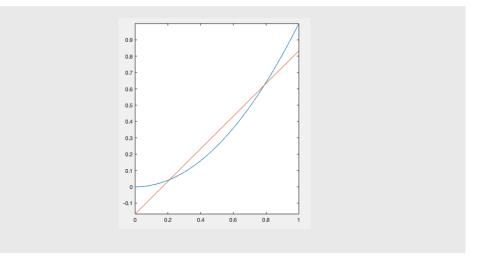
Solving for these to be zero,

$$\frac{2}{3}a + b = \frac{1}{2}$$
$$a + 2b = \frac{2}{3}$$

gives

$$a=1$$
 $b=-\frac{1}{6}$

(Continued on page 2.)



Problem 2

Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(y) = \frac{c}{1+y^2}$$
, where c is a positive constant.

2a

Show that f is a contraction on \mathbb{R} if $c < c_0$, where

$$c_0 = \frac{8\sqrt{3}}{9} \approx 1.54.$$

You don't have to show the " \approx ".

Løsningsforslag: We need to show that |f'(y)| < 1.

$$f'(y) = -2c\frac{y}{(1+y^2)^2}$$

To find the maximum we differentiate once more

$$\frac{d}{dy}\frac{y}{(1+y^2)^2} = \frac{(1+y^2)^2 - 4y^2(1+y^2)}{(1+y^2)^4}$$
$$= \frac{(1-y^2)^2 - 4y^4}{(1+y^2)^4}.$$

Therefore |f'(y)| will have max if $1 - y^2 = 2y^2$, i.e., $y = \pm 1/\sqrt{3}$. Therefore

$$|f'(y)| \le c \frac{18}{16\sqrt{3}} = \frac{c}{c_0}$$

2b

Assume that $c = c_0/2$, we wish to find an approximation to the solution of y = f(y), accurate to 17 decimal places. Explain how you could do this

(Continued on page 3.)

without using the "abcd-formula".

Løsningsforslag: f is a contraction with L = 1/2, we choose $y_0 = 0$, in a simple iteration; $y_{n+1} = f(y_n)$, which gives $0 < y_1 = c < 1$. We have the error formula

$$|y_n - y| \le \frac{L^n}{1 - L} |y_1 - y_0| = 2^{-(n-1)}$$

We must choose n such that

$$2^{-(n-1)} \le \frac{1}{2} \cdot 10^{-17}$$
 i.e., $2^n \ge 10^{17}$,

which is satisfied for n > 56.5.

2c

Consider the initial value problem

$$y'(t) = g(y), \quad y(0) = 0, \quad g(y) = \frac{1}{1+y^2}.$$
 (1)

We wish to find an approximation to y(t) for $t \in [0, 1]$, and set $\Delta t = 1/N$ for some integer $N \ge 1$. We use the implicit scheme

$$y_{i+1} = y_i + \frac{\Delta t}{2} \left(g(y_i) + g(y_{i+1}) \right), \quad i = 0, 1, \dots, N-1.$$

Using pseudo-code explain how you would implement this scheme. (Make sure your implementation is well-defined).

Løsningsforslag: Here is a Matlab version

```
N = 50; T = 1; dt = T/N;
y0=0;
g=@(y) 1./(1+y.^2);
y=zeros(1,N+1); t=linspace(0,T,N+1);
y(1) = y0;
tol=0.5*1e-16;
for i=2:N+1
    z=y(i-1)+0.5*dt*g(y(i-1));
    yn=y(i-1)+dt*g(y(i-1)); % initial guess
    ynn=z+0.5*dt*g(yn);
    n=1;
    while (abs(yn-ynn)>tol)&&(n<57)</pre>
        % fixpoint iteration to find y_{i}
        % know that (from a) 57 iterations suffice
        n=n+1;
        yn=ynn;
        ynn=z+0.5*dt*g(yn);
    end
    y(i) = ynn;
end
```

(Continued on page 4.)

2d

The truncation error τ_i is defined by

$$\tau_i = \frac{y(t_{i+1}) - y(t_i)}{\Delta t} - \frac{1}{2} \left(g(y(t_{i+1})) + g(y(t_i)) \right)$$

where y(t) is the exact solution of (1) and $t_i = i\Delta t$. Show that the truncation error satisfies

$$|\tau_i| \le \frac{\Delta t^2}{12} M,$$

where

$$M = \left\| g'' g^2 + (g')^2 g \right\|_{\infty}.$$

What is the convergence order of this method?

Løsningsforslag: We get that

$$\tau_i = \frac{1}{\Delta t} \Big(\int_{t_i}^{t_{i+1}} g(y(t)) \, dt - \frac{\Delta t}{2} \left(g(y(t_i)) + g(y(t_{i+1})) \right) \Big),$$

We recognise the error of the trapezoidal rule as

$$\int_{t_i}^{t_{i+1}} g(y(t)) \, dt - \frac{\Delta t}{2} \left(g(y(t_i)) + g(y(t_{i+1})) \right) \le \frac{\Delta t^3}{12} \max_t \left| \frac{d^2}{dt^2} g(y(t)) \right|$$

Now we have

$$\frac{d}{dt}g(y(t)) = g'g,$$

$$\frac{d^2}{dt^2}g(y(t)) = g''g^2 + (g')^2g.$$

Since we know that the error of the method is bounded by $K \max_i |\tau_i| = \mathcal{O}(\Delta t^2)$ the method is second order.

Problem 3

Let L^n be an $n \times n$ lower triangular non-singular matrix.

3a

Show that $(L^2)^{-1}$ is lower triangular. If L^{n+1} is a general non-singular $(n+1) \times (n+1)$ lower triangular matrix written as

$$L^{n+1} = \begin{pmatrix} L^n & \mathbf{0} \\ \mathbf{r}^\top & \alpha \end{pmatrix},$$

where L_n is an $n \times n$ non-singular lower triangular matrix, \boldsymbol{r} is an $n \times 1$ vector and $\alpha \neq 0$ is a number. Show that the inverse $(L^{n+1})^{-1}$ is given by

$$(L^{n+1})^{-1} = \begin{pmatrix} (L^n)^{-1} & \mathbf{0} \\ -\frac{1}{\alpha} \boldsymbol{r}^\top (L^n)^{-1} & \frac{1}{\alpha} \end{pmatrix},$$
 (2)

and conclude that $(L^n)^{-1}$ is lower triangular for any $n \ge 0$.

(Continued on page 5.)

Løsningsforslag: We compute

$$L^{n+1} \left(L^{n+1} \right)^{-1} = \begin{pmatrix} L^n & \mathbf{0} \\ \mathbf{r}^\top & \alpha \end{pmatrix} \begin{pmatrix} (L^n)^{-1} & \mathbf{0} \\ -\frac{1}{\alpha} \mathbf{r}^\top (L^n)^{-1} & \frac{1}{\alpha} \end{pmatrix} = \begin{pmatrix} I_n & \mathbf{0} \\ \mathbf{0}^\top & 1 \end{pmatrix}.$$

If $(L^2)^{-1}$ is lower triangular, then $(L^3)^{-1}$ is lower triangular etc.

3b

Let L^k be as above, and $\boldsymbol{y} \in \mathbb{R}^k$, $k \geq 2$. How many operations (additions, subtractions, multiplications or divisions) do you need to compute the product $\boldsymbol{y}^{\top}L^k$ as efficiently as possible?

Løsningsforslag: Since L^k is lower triangular, $L_{ji}^k = 0$ for i > j. We have that for i = 1, ..., k

$$\left(\boldsymbol{y}^{\top}L^{k}\right)_{i} = \sum_{j=1}^{k} y_{j}L_{ji}^{k} = \sum_{j=i}^{k} y_{j}L_{ji}^{k}.$$

For each i we have k-i+1 multiplications and k-i additions. This gives a total of

$$\sum_{i=1}^{k} 2k - 2i + 1 = 2k^2 - 2\frac{k(k+1)}{2} + k = k^2 \quad \text{operations}$$

3c

Based on (2), formulate an algorithm which, given a non-singular lower triangular $n \times n$ matrix A, computes its inverse B.

Løsningsforslag: In Matlab

```
for i=1:n
    B(i,i)=1/A(i,i);
    for j=1:i-1
        B(i,j:i-1)=-B(i,i)*A(i,j:i-1)*B(j:i-1,j);
    end
end
```

with inner loop spelled out

```
for i=1:n
    B(i,i)=1/A(i,i);
    for j=1:i-1
        B(i,j)=0;
        for k=j:i-1
            B(i,j)=B(i,j)+A(i,k)*B(k,j);
        end
        B(i,j)=-B(i,j)*B(i,i);
    end
end
```

(Continued on page 6.)

Problem 4

Let $\{X_i\}_{i=1}^{\infty}$ be a sequence of independent random variables, uniformly distributed in the interval [0, 1].

4a

Explain why

$$\lim_{M \to \infty} \frac{4}{M} \sum_{i=1}^{M} \sqrt{1 - X_i^2} = \pi \quad \text{almost surely.}$$

Løsningsforslag: We have that

$$\frac{4}{M}\sum_{i=1}^M \sqrt{1-X_i^2}$$

is the Monte-Carlo approximation to the integral

$$4\int_0^1 \sqrt{1-x^2} \, dx = \pi.$$

We know that Monte-Carlo approximations converge almost surely.

4b

How large must you choose M if you want to be 90% sure that

$$\left|\frac{4}{M}\sum_{i=1}^{M}\sqrt{1-X_i^2} - \pi\right| < 0.05?$$

Løsningsforslag: We have $\max f - \min f = 4$. We choose M so that

$$\frac{4}{0.05^2M} \le 0.1 \quad \Rightarrow \quad M \ge 16\,000.$$

THE END

Some useful error formulas

Simple iteration, finding $\xi = f(\xi)$:

$$|x_n - \xi| \le \frac{L^n}{1 - L} |x_0 - x_1|, \quad 1 > L \ge |f'(x)|.$$

Trapezoid rule: $\left| E_1(f) - \int_a^b f(x) \, dx \right| \leq \frac{(b-a)^3}{12} M_2,$ Simpson's rule: $\left| E_2(f) - \int_a^b f(x) \, dx \right| \leq \frac{(b-a)^5}{2880} M_4,$ $M_k = \max \left| f^{(k)} \right|.$ Monte Carlo integration:

$$\mathcal{E}_M(f) \leq rac{\left(\max_{oldsymbol{x} \in [0,1]^d} \left\{f(oldsymbol{x})
ight\} - \min_{oldsymbol{x} \in [0,1]^d} \left\{f(oldsymbol{x})
ight\}
ight)}{2\sqrt{M}}$$

and

$$\begin{aligned} \operatorname{Prob}\left(\left|I_{M}(f) - \int_{[0,1]^{d}} f(\boldsymbol{x}) \, d\boldsymbol{x}\right| \geq \varepsilon\right) \\ \leq \frac{\left(\max_{\boldsymbol{x} \in [0,1]^{d}} \left\{f(\boldsymbol{x})\right\} - \min_{\boldsymbol{x} \in [0,1]^{d}} \left\{f(\boldsymbol{x})\right\}\right)^{2}}{4\varepsilon^{2}M}. \end{aligned}$$

Polynomial interpolation:

$$|p_n(x) - f(x)| \le \frac{M_{n+1}}{(n+1)!} \prod_{i=0}^n |x - x_i|.$$

Error for a one-step method; $y_{n+1} = y_n + \Delta t \Phi(y_n, \cdots)$ for the ODE y' = f(y):

$$|e_n| \le \frac{\max_i |\tau_i|}{L_\Phi} (e^{L_\Phi t_n} - 1).$$