
EXERCISES MAT3110

November 22

Exercises from SM.

12.1
12.2 Hint: Note that y(t) = 0 is a solution.
12.4
12.6

12.19

Exercise 1. Explain why an explicit Runge–Kutta method cannot be A-stable.

Exercise 2.

a) Heun’s method is the Runge–Kutta method with Butcher tableau

c A
bT

=
0 0
1 1 0

1/2 1/2

Write the associated one-step method on the form

yn+1 = yn + hΦ(tn, yn, yn+1;h),

and determine a formula for the stepping rule Φ(tn, yn, yn+1;h). Is the
method explicit or implicit?

b) What is the method’s region of absolute stability, and is the method A-
stable?

c) Consider the IVP

y′(t) = f(y) t ∈ [a, b]

y(a) = y0,

where f ∈ C2(R) and suppose it has a unique solution y ∈ C3([a, b]).
Show that for this particular problem, the above Runge–Kutta method

is consistent and has order of accuracy p = 2. (It also is consistent and has
order 2 in the more general sense: when applied to all IVP with sufficiently
smooth solutions and f(t, y). It takes a bit longer Taylor expansions in
both arguments of f(t, y) to show that.)
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November 15

Exercises from SM.

10.1
10.2 Hint: What happens when you apply the Gauss quadrature to integrating

f = Lk ∈ Pn?
11.2 exercises (i) and (iii)
11.6
11.7

Exercise 1. Estimate the integral

I(f) =

∫
[0,1]3

f(x)dx1dx2dx3

where

f(x) = cos(πx22) sin(πx1 − x3/2) + exp(x1x2)

using the Monte Carlo method on a computer. How many samples M are needed
to ensure that the root mean square error is less than 10−4?

Exercise 2. Let

I(f) =

∫
[0,1]

f(x)dx

with

f(x) = x−1/4.

How many Monte Carlo samples are need to ensure that

P(|I(f)− IM (f)| ≥ 10−5) ≤ 0.1 ?

Hint: Compute or obtain an upper bound for Var[f(X)] and translate inequality

(2) in ”The Monte Carlo method in a nutshell” to the current setting.

Exercise 3. Compute the composite Gauss rule formula for n = 1 when [a, b] =
[−1, 1] and w ≡ 1. (That is, compute Gm,1 in the notation given below in (4).)

Exercise 4. (Long, not very course relevant exercise for those interested.) Here we
seek to verify the error estimate for the composite Gauss rule that was handwavingly
presented in the lecture for the special case with weight function w ≡ 1, namely:∣∣∣∣∣

∫ b

a

f(x)dx−Gm,n

∣∣∣∣∣ ≤ maxx∈[a,b] |f (2n+2)(x)|
(2n+ 2)!

(
h

2

)2n+2

(b− a). (1)

(The factor 22n+2 that appears in the denominator above was written incorrectly
as 23n+3 in the lecture.) From the lecture, we recall that

Gn(a, b) =

n∑
k=0

Wkf(xk)

denotes the Gauss rule over a given interval [a, b] using the n+ 1 quadrature points
{xk}nk=0, and that∣∣∣∣∣

∫ b

a

f(x)dx−Gn(a, b)

∣∣∣∣∣ ≤ maxx∈[a,b] |f (2n+2)(x)|
(2n+ 2)!

∫ b

a

(πn+1(x))2dx (2)

where

πn+1(x) =

n∏
k=0

(x− xk).
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Chopping up [a, b] at the mesh points xi = a + ih with h = (b − a)/m, we obtain
subintervals [xi−1, xi] to produce the approximation∫ b

a

f(x)dx ≈
m∑
i=1

Gn(xi−1, xi) =: Gm,n.

This is the composite Gauss rule using m subintervals with n+1 quadrature points
over each subinterval. Relating a point in the standard interval, t ∈ [−1, 1], uniquely
to a point in a subinterval, x ∈ [xi−1, xi], through the change of variables

t(x) =
2x− (xi−1 + x)

h
, x(t) =

xi−1 + xi + ht

2
(3)

(and connecting Legendre polynomials on [−1, 1] to a corresponding set of basis
functions on [xi−1, xi]) we obtained that

Gm,n =
h

2

m∑
i=1

n∑
k=0

Wkf

(
xi−1 + xi + tkh

2

)
(4)

with {tk}nk=0 denoting the zeros of the Legendre polynomial of exact degree n+ 1
(i.e. on [−1, 1]) and the weights Wk in the particular case of (4) being defined by

Wk =

∫ 1

−1
(Lk(t))2dt.

It was shown in the lecture that when {tk}nk=0 are the Gauss quadrature points
for Gn(−1, 1), then {x(tk)}nk=0 according to the above change of variables are the
Gauss quadradure points for Gn(x−1, xi). Using this in (2), we obtain that∣∣∣∣∣
∫ xi

xi−1

f(x)dx−Gn(xi−1, xi)

∣∣∣∣∣ ≤ maxx∈[xi−1,xi] |f (2n+2)(x)|
(2n+ 2)!

∫ xi

xi−1

(πn+1,i(x))2dx

with πn+1,i(x) :=
∏n
k=0(x − x(tk)). By the triangle inequality, this further gives

that∣∣∣∣∣
∫ b

a

f(x)dx−Gm,n

∣∣∣∣∣ ≤
m∑
i=1

maxx∈[xi−1,xi] |f (2n+2)(x)|
(2n+ 2)!

∫ xi

xi−1

(πn+1,i(x))2dx (5)

(where x(tk) maps to the interval [xi−1, xi] of the index i that is ”active” in the
summation).

a) Use the change of variables (3) to show that∫ b

a

(πn+1,i(x))2dx =

(
h

2

)2n+3 ∫ 1

−1
(πn+1(t))2dt

where πn+1(t) =
∏n
k=0(t− tk) for t ∈ [−1, 1].

b) Show that for any n ≥ 0 and with {tk}nk=0 as above denoting the roots of the
Legendre polynomial of exact degree n+1, that it holds that maxt∈[−1,1] |πn+1(t)| ≤
1.

You may use the following fact without proof: The Legendre polynomial
φn with exact degree n is an odd function when n is odd and an even
function when n is even. (What does this imply about the all roots of φn
except possibly a root at t = 0?)

c) Use parts a) and b) in combination with (5) to show that (1) holds.



4

November 8

Exercises from SM.

9.1
9.2
9.5

9.10

Exercise 5. Find the best approximation p1 ∈ P1 in L2
w(0, 1) with w(x) = x to

f(x) = ex and compute the mean square error ‖f − p1‖22.

Exercise 6. Given a bounded interval (a, b), a weight function w : (a, b)→ (0,∞)
(that by assumption is integrable) and the inner product

〈f, g〉 =

∫ b

a

f(x)g(x)w(x)dx f, g ∈ L2
w(a, b),

let φ0, φ1, . . . be a system of polynomials that are orthogonal with respect to the
given inner product with φ0 ≡ 1 and degree(φj) = j. In this exercise we will show
that for any f ∈ L2

w(a, b), there exists a sequence (ck) ⊂ R such that

lim
n→∞

‖pn − f‖2 = 0 for pn(x) :=

n∑
k=0

ckφk(x). (6)

a) Show that for any f̃ ∈ C[a, b], it holds that

‖f̃‖2 ≤ C max
x∈[a,b]

|f̃(x)| = C‖f̃‖∞

and find a suitable value for the constant C.
b) Show that for any f̃ ∈ C[a, b], there exists a sequence of polynomials (p̃n)

with p̃n ∈ Pn such that

lim
n→∞

‖p̃n − f̃‖2 = 0.

Hint: Use Weierstrass approximation theorem combined with part a).

c) Take as a fact that C[a, b] is dense in L2
w(a, b), and use this to prove that for

any f ∈ L2
w(a, b), there exists a sequence of polynomials (p̂n) with p̂n ∈ Pn

such that
lim
n→∞

‖p̂n − f‖2 = 0.

Hint: Density implies there exists a sequence (f̃n) ⊂ C[a, b] such that

‖f̃n − f‖2 → 0 as n → ∞. And for any fixed n, we know by b) that
there exists a sequence of polynomials (p̃n,m)∞m=1 with p̃n,m ∈ Pm such

that ‖f̃n − p̃n,m‖2 → 0 as m→∞.

d) Show that the convergence (6) holds when

ck =
〈f, φk〉
〈φk, φk〉

.

Hint: For each n ≥ 0, show first that (since pn is the best approximation
of degree n in 2-norm),

‖pn − f‖2 ≤ ‖p̂n − f‖2.
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November 1

Exercises from SM.

8.2 Hint: If p(x) is minmax to f(x), what is a minmax to f̃(x) = f(−x)?
8.3
8.4
8.5

8.8 Hint: f(x) = an+1x
n+1 +

n∑
k=0

akx
k

︸ ︷︷ ︸
∈Pn

Exercise related to proof of Theorem 8.2 in SM. On the bottom of page 229,
it is stated ”the set S is evidently bounded and closed in Rn+1”, and on top of page
230, it is claimed there exits a minimizer c∗ of E(c) = ‖f−(c0+c1x+ . . .+cnx

n)‖∞
over S such that

E(c∗) = min
c∈S

E(c)

(In my proof in the lecture, the set S was instead called A and instead of c∗ I let
d denote the minimizer in A, but the core open questions remain.)

We know that, for a continuous function, the preimage of a bounded set is again
bounded. Since E : Rn+1 → [0,∞) is a continuous function and S = E−1([0, ‖f‖∞+
1]) is the preimage of the closed set [0, ‖f‖∞ + 1], the set S is closed too.

The fact that S is also bounded and that the minimizer c∗ of E over the set S is
itself contained in S follows from further results in real analysis. However, since a
course in real analysis is not a prerequisite for this course, we will prove these two
results which are critical for the proof of Theorem 8.2 in this exercise.

a) Show that S = {c ∈ Rn+1 | E(c) ≤ ‖f‖∞ + 1} = E−1([0, ‖f‖∞ + 1]), is
bounded.

Hint: Show first that S is a convex set, meaning that if c, d ∈ S then (λc +
(1− λ)d) ∈ S for all λ ∈ [0, 1].

Suppose next that S is unbounded. Then the convexity of S and the knowledge
that 0 ∈ S imply that there exist a ”direction” c̃ = (c̃0, . . . , c̃n) ∈ Rn+1 \ {0} such
that µc̃ ∈ S for all µ > 0. Combine this with

‖f − q‖∞ ≥ ‖q‖∞ − ‖f‖∞ ∀q ∈ Pn

to reach a contradiction.

b) Make use of the following fact from real analysis (not curriculum) – S ⊂
Rn+1 is compact implies that every sequence (c(k)) in S has a subsequence
(c(kj)) that converges to an element in S – to show that there exists a
minimizer of E over S that belongs to S, i.e.,

∃c∗ ∈ S s.t. E(c∗) = min
c∈S

E(c).

Hint: Consider a sequence (c(k)) ⊂ S such that

lim
k→∞

E(c(k)) = inf
cS
E(c)

(which exists by definition). Exploit compactness of S and continuity of E to

arrive at the conclusion.



6

October 25

Exercises from SM.

7.1
7.2 Hint: Theorem 7.1 and that any pn+1 ∈ Pn+1 can be written as pn+1 =

c(x− (a+ b)/2)n+1 + rn for some c ∈ R and rn ∈ Pn.
7.3 Hint: The formula holding for all f ∈ P1 is equivalent to it holding for

f = 1 and f = x.
7.4 Hint: extend hint from previous exercise.
7.7

7.13
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October 18

1. Let xi = a+ ih for i = 0, . . . , n with h = (b−a)/n be equally spaced points over
[a, b] and for n ≥ 1, consider the function

πEn+1(x) =

n∏
i=0

(x− xi) x ∈ [a, b]

that we know from interpolation error estimates. For later reference in two weeks,
we now use the superscript E in the name of πEn+1 to stress that the {xi} are equally
spaced points.

a) Show that
max
x∈[a,b]

|πEn+1(x)| ≤ n!hn+1.

Hint: Noting that (xi − a)/h = i and writing t = (x− a)/h ∈ [0, n], we
have that

n∏
i=0

|x− xi| = hn+1
n∏
i=0

|t− i|

and with btc := max{y ∈ N | y ≤ t}, bound the two factors

n∏
i=0

|t− i| =

 btc∏
i=0

(t− i)

 n∏
i=btc+1

(i− t)


from above separately.

b) To sharpen this bound, suppose next that

max
x∈[a,b]

|πEn+1(x)| = max
x∈[a,x1]

|πEn+1(x)|

(this is true but a bit messy to show; see for instance Isaacson and Keller,
Analysis of Numerical methods, p. 267). Use this property to show that

max
x∈[a,b]

|πEn+1(x)| ≥ hn+1 (2n)!

22n+1n!

and

max
x∈[a,b]

|πEn+1(x)| ≤ hn+1n!

4
.

Hint: A lower bound is given by |πn+1(a+ h/2)|.
For the upper bound, first show that

max
x∈[a,x1]

(x− x0)(x1 − x) ≤ h2/4

and use this together with another splitting of factors, similar as in a).
c) Use the following global Stirling’s approximation bounds:

√
2πn

(n
e

)n
exp(

1

12n+ 1
) < n! <

√
2πn

(n
e

)n
exp(

1

12n
)

to show that the lower bound is indeed smaller or equal to the upper bound
in b) for any n ≥ 2 (and for n = 1 they coincide).

Exercises from SM.

6.1
6.2
6.3
6.5

6.10
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October 11

1. Let A ∈ Rn×nsym with orthonormal eigenbasis v1, . . . , vn and corresponding eign-
values λ1, . . . , λn.

a) Show that for the Rayleigh quotient

R(v) :=
vTAv

vT v
it holds for any j = 1, . . . , n that

R(vj) = λj

b) Show that maxi,j |λi − λj | ≤ 2‖A‖2.
Hint: For i 6= j, show that

λi − λj = R(vi)−R(vj) = . . . = (vi + vj)
TA(vi − vj),

and use Cauchy–Schwarz inequality.
c) Show that for a perturbed eigenvector ṽ = vj + ∆v with

∆v =

n∑
i=1
i 6=j

εivi

with (εi) ⊂ R, it holds that

|R(ṽ)− λj | ≤ 2‖A‖2‖∆v‖22.

Hint: use orthogonality to expand numerator and denominator of R(ṽ)
and use part b) of exercise.

2. Show that for any subordinate matrix p-norm, p ∈ [1,∞] and diagonal matrix
D = diag(d1, . . . , dn) ∈ Rn×n, it holds that

‖D‖p = max
i=1,...,n

|di|.

Look through the proof of the Bauer–Fike theorem and convince yourself using the
above property that inequality (5.11) in the lecture notes can be extended from the
2-norm to any p-norm as follows:

min
λ∈σ(A)

|µ− λ| ≤ κp(T )‖∆A‖p.

Exercises from SM.

5.5 Hint: Write/separate both left-hand side and right-hand side of

(D + εA)(e+ εu) = (λ+ εµ)(e+ εu)

into sums of multiplied powers of ε. That is, terms multiplied with 1, terms
multiplied with ε, and terms multiplied with ε2. These constitute equations
on different ε-scales. Solve them separately.

5.10
5.13 Hint: Bauer–Fike applied to symmetric matrix T and T + ∆T , where

∆T ∈ Rn×n contains one non-zero element, namely ∆Tn,n−1 6= 0.
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October 4

1. Consider the nonlinear system of equations

f(x) =

[
x21 + x22 − 1

exp(x1x2) + x1 + x2 − 1

]
. (7)

a) Using that f1(x1, x2) = 0 =⇒ x2 = ±
√

1− x21 for x1 ∈ [−1, 1], show that
plugging this into f2(x1, x2) = 0 leads to the equations

x1 ±
√

1− x21 + exp(±x1
√

1− x21)− 1︸ ︷︷ ︸
=:g±(x1)

= 0 x1 ∈ [−1, 1].

Moreover, show that g+(x) = 0 has a unique solution x1,+ ∈ (−1, 0) and
g− = 0 has a unique solution x1,− ∈ (0, 1). Conclude that the system of
equations (7) has exactly two solutions.

Hint: For g+, for instance, start with showing that g′+(x) > 0 for all
x ∈ (−1, 0) and g+ > 0 for all x ≥ 0.

b) Compute the Jacobian of the function f , Jf (x) and explain why Jf is
nonsingular for x near either of the two solutions.

c) Find both solutions of the problem (7) using Newton’s method with an
(estimated) accuracy of 10−6 in∞−norm (estimate the approximation error
at k-th iteration by ‖x(k) − x(k−1)‖∞). Estimate the order of convergence
in your numerical experiments. Are your observations consistent with the
order of convergence theory ensures?

Exercises from SM.

4.1
4.6
4.7
4.8 Hint: For second part of problem, compute x(k+1) explicitly when x(k) =

(1 + α, 1− α) to deduce linear convergence.
Problem 2 in Mat-Inf4130 Exam 2021.

https://www.uio.no/studier/emner/matnat/math/MAT3110/h23/oppgaver/mat3110_2021.pdf
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September 27

1. For matrices in Rn×n with n ≥ 2 show that:

a) If U and Ũ are upper triangular, then the product UŨ is also upper trian-
gular.

(Hint: UT and ŨT are lower triangular matrices.)
b) If U is upper triangular and invertible, then U−1 is upper triangular.

(Hint: You can use that for any invertible matrix A, it holds that
(AT )−1 = (A−1)T .)

Exercises from SM.

3.1
3.3
3.4
3.7 Hint: Read first up on definition 3.4 in SM for banded matrices and impose

the additional assumption that B nonsingular in this exercise (without this
assumption exercise is not necessarily true).
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September 20

1. Recall that a symmetric matrix B ∈ Rn×n always has n real valued eigenvalues
λ1 ≤ λ2 ≤ . . . ≤ λn that can be associated to an orthonormal set of eigenvectors
v1, . . . , vn, that thus spans Rn. Use this property to prove that any A ∈ Rn×n,

‖A‖2 =
√
σn,

where σn denotes the largest eigenvalue of ATA.

2. Let A ∈ Rm×n with m ≥ n be a matrix with rank(A) = n and with QR
factorization A = QR. Then for a vector b ∈ Rm, the unique solution of the least
squares problem

min
x∈Rn

‖Ax− b‖2
can be obtained by solving the ”QR problem”

Rx = QT b

and can also be obtained by the normal equations

ATAx = AT b.

The condition numbers associated to the respective problems are κ2(R) and κ2(ATA).
Show that

κ2(ATA) = (κ2(R))2 ≥ κ2(R).

Note that this implies that the normal equations always is at least as ill-conditioned
as the ”QR problem”.

Exercises from SM.

2.12
2.13 Hint: Find an equation for δx given that Ax = b and use exercise 2.12.
2.14
2.15
Problem 1 in Mat-Inf4130 Exam 2021.

https://www.uio.no/studier/emner/matnat/math/MAT3110/h23/oppgaver/mat3110_2021.pdf
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September 13

Let n ≥ 2 be a natural number in the below exercises.

1. For x ∈ Rn, explain why

‖x‖p :=

(
n∑
k=1

|xi|p
)1/p

is not a norm for any p ∈ (0, 1).
Hint: Show that not all three conditions for a norm is met.

2.

a) Using Hölder’s inequality, show that for any p > 1 and any x ∈ Rn,it holds
that

‖x‖1 ≤ n(p−1)/p‖x‖p,
and that

‖x‖p ≤ n1/p‖x‖1,
(Hint: For the last inequality, first show directly, not using Hölder’s in-
equality, that ‖x‖p ≤ n1/p‖x‖∞. )

b) Conclude from this that

n−1/p‖x‖p ≤ ‖x‖1 ≤ n(p−1)/p‖x‖p,
and any sequence (xk) ⊂ Rn, verify that the 1-norm and any p-norm for
p ∈ [1,∞) are equivalent in the following sense

lim
k→∞

‖xk − x∗‖1 = 0 ⇐⇒ lim
k→∞

‖xk − x∗‖p = 0.

Why does this imply the equivalence of any two norms ‖ · ‖p and ‖ · ‖q on
Rn for p, q ∈ [1,∞)?

c) Show that
‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞,

and conclude from this and the previous exercise that all p-norms for
p ∈ [1,∞] are equivalent.

3. For any vector norm ‖·‖ on Rn, verify that the subordinate norm on Rn×n given
by

‖A‖ := max
v∈Rn

∗

‖Av‖
‖v‖

is indeed a norm on Rn×n.

4. For any symmetric matrix A ∈ Rn×n, explain why ‖A‖1 = ‖A‖∞. Find a 2× 2
matrix such that

|A‖1 6= ‖A‖∞.

Exercises from SM and exams.

2.7
2.8
2.9 Hint: Look at Theorem 2.9 in SM. What are the eigenvalues of the inverse

of a matrix?
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September 6

1. Let n ≥ 2 and let A ∈ Rn×n be such that det(A(i)) 6= 0 for all 1 ≤ i < n. Then
we know from theory that there exists an LU factorization A = LU , where L is
unit lower triangular and U is upper triangular. Such matrices L and U can be
determined from the system of nonlinear equations

aij =

min(i,j)∑
k=1

`ikukj 1 ≤ i, j ≤ n.

This is a system of n2 equations with n2 unknowns. Use that uii 6= 0 for all
i ∈ {1, . . . , n − 1} (this is a consequence of det(A(n−1) 6= 0) to show that the
solution is unique.

Hint: Since `11 = 1, the first row of U is determined uniquely. And once u11
is determined, the first column of L is determined uniquely. Explain in a few
sentences how by solving the equations sequentially, row/column by row/column,
the solutions of L and U are unique.

2. Compute the LU factorization of the matrix

A =

1 2 3
2 6 9
3 10 18


From what you have obtained, it thus holds that PA = LU with permutation
matrix P = I. Explain why the matrix PA with

P =

0 0 1
0 1 0
1 0 0


also has an LU factorization. Conclude from this that in general, there may not
be a unique PLU triple (permutation, unit lower triangular and upper triangular)
such that the factorization

PA = LU

holds.
Hint: How does P permute the order of rows in A?

Exercises from SM and exams.

2.1 Hint: If L is lower triangular and U is unit upper triangular, try to use the

permutation matrix Q to write L and U in terms of L̃ and Ũ , where L̃ is

unit lower triangular and Ũ is upper triangular.
2.2 Hint: Observe that the product DU is upper triangular. Let A have a

decomposition A = LŨ . How do we find D and U such that DU = Ũ?
2.3
2.4
Problem 1d) in Mat-Inf4130 Exam 2013.

https://www.uio.no/studier/emner/matnat/math/MAT3110/h23/oppgaver/mat_inf_4130_2013.pdf
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