UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in INF-MAT 4350 - Numerical linear algebra
Day of examination: 7 December 2012
Examination hours: 0900-1300
This problem set consists of 4 pages.
Appendices: None
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All 9 part questions will be weighted equally.

Problem 1 Gauss-Seidel

Consider the matrix

$$
\boldsymbol{A}:=\left[\begin{array}{cc}
4 & -\alpha \\
-\alpha & 1
\end{array}\right], \quad \alpha \in \mathbb{R}
$$

1a
For what values of α is \boldsymbol{A} symmetric positive definite?
Answer: \boldsymbol{A} is symmetric for any α. Since $a_{11}>0$, the matrix \boldsymbol{A} is positive definite if and only if $\operatorname{det}(\boldsymbol{A})=4-\alpha^{2}>0$ or $-2<\alpha<2$.

1b

For what values of α does Gauss Seidel's method converge?
Answer: Applying GS to the system

$$
\left[\begin{array}{cc}
4 & -\alpha \\
-\alpha & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
b \\
c
\end{array}\right]
$$

we find $x_{k+1}=\frac{\alpha}{4} y_{k}+\frac{1}{4} b$ and $y_{k+1}=\alpha x_{k+1}+c=\alpha\left(\frac{\alpha}{4} y_{k}+\frac{1}{4} b\right)+c$. Thus

$$
\left[\begin{array}{l}
x_{k+1} \\
y_{k+1}
\end{array}\right]=\boldsymbol{G}\left[\begin{array}{l}
x_{k} \\
y_{k}
\end{array}\right]+\boldsymbol{c}, \quad \boldsymbol{G}=\left[\begin{array}{cc}
0 & \alpha / 4 \\
0 & \alpha^{2} / 4
\end{array}\right] .
$$

GS converges if and only if $\rho(\boldsymbol{G})<1$. Since \boldsymbol{G} has eigenvalues 0 and $\alpha^{2} / 4$ this happens if and only if $-2<\alpha<2$ i. e., if and only if \boldsymbol{A} is positive definite.
(Continued on page 2.)

Problem 2 Perturbation

Let $\left\|\|\right.$ be a vector norm on \mathbb{R}^{n} and for any $\boldsymbol{B} \in \mathbb{R}^{n \times n}$ let

$$
\|\boldsymbol{B}\|:=\max _{\boldsymbol{x} \neq \mathbf{0}} \frac{\|\boldsymbol{B} \boldsymbol{x}\|}{\|\boldsymbol{x}\|}
$$

be the associated operator norm of \boldsymbol{B}. Suppose $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is nonsingular.

2 a

Show that for any $\boldsymbol{b}, \boldsymbol{e} \in \mathbb{R}^{n}$ with $\boldsymbol{b} \neq \mathbf{0}$

$$
\begin{equation*}
\frac{\|\boldsymbol{e}\|}{\|\boldsymbol{b}\|} \leq\|\boldsymbol{A}\|\left\|\boldsymbol{A}^{-1}\right\| \frac{\|\boldsymbol{y}-\boldsymbol{x}\|}{\|\boldsymbol{x}\|} \tag{1}
\end{equation*}
$$

where \boldsymbol{x} and \boldsymbol{y} are solutions of $\boldsymbol{A x}=\boldsymbol{b}$ and $\boldsymbol{A} \boldsymbol{y}=\boldsymbol{b}+\boldsymbol{e}$.
Hint: Use that $\boldsymbol{A}(\boldsymbol{y}-\boldsymbol{x})=\boldsymbol{e}$ and $\boldsymbol{x}=\boldsymbol{A}^{-1} \boldsymbol{b}$.
Answer: Subtracting $\boldsymbol{A x}=\boldsymbol{b}$ from $\boldsymbol{A} \boldsymbol{y}=\boldsymbol{b}+\boldsymbol{e}$ we find $\boldsymbol{A}(\boldsymbol{y}-\boldsymbol{x})=\boldsymbol{e}$. Taking norms

$$
\|\boldsymbol{e}\| \leq\|\boldsymbol{A}\|\|\boldsymbol{y}-\boldsymbol{x}\|, \quad\|\boldsymbol{x}\| \leq\left\|\boldsymbol{A}^{-1}\right\|\|\boldsymbol{b}\| .
$$

But then $\frac{1}{\|\boldsymbol{b}\|} \leq \frac{\left\|\boldsymbol{A}^{-1}\right\|}{\|\boldsymbol{x}\|}$,

$$
\frac{\|\boldsymbol{e}\|}{\|\boldsymbol{b}\|} \leq\|\boldsymbol{A}\|\|\boldsymbol{y}-\boldsymbol{x}\| \frac{\left\|\boldsymbol{A}^{-1}\right\|}{\|\boldsymbol{x}\|} .
$$

and (1) follows.

2b

Show that we have equality in (1) for some vectors \boldsymbol{b} and \boldsymbol{e}.
Hint: There are vectors \boldsymbol{c} and \boldsymbol{d} so that

$$
\left\|A^{-1}\right\|=\frac{\left\|A^{-1} c\right\|}{\|c\|}, \quad\|A\|=\frac{\|A d\|}{\|d\|} .
$$

You should not show this.
Answer: Define $\boldsymbol{b}:=\boldsymbol{c}$ and $\boldsymbol{e}:=\boldsymbol{A} \boldsymbol{d}$. Then $\|\boldsymbol{e}\| /\|\boldsymbol{b}\|=\|\boldsymbol{A} \boldsymbol{d}\| /\|\boldsymbol{c}\|$. Now

$$
\frac{1}{\|\boldsymbol{c}\|}=\frac{\left\|\boldsymbol{A}^{-1}\right\|}{\left\|\boldsymbol{A}^{-1} \boldsymbol{c}\right\|}=\frac{\left\|\boldsymbol{A}^{-1}\right\|}{\|\boldsymbol{x}\|}, \quad\|\boldsymbol{A d}\|=\|\boldsymbol{A}\|\|\boldsymbol{d}\|=\|\boldsymbol{A}\|\left\|\boldsymbol{A}^{-1} \boldsymbol{e}\right\|=\|\boldsymbol{A}\|\|\boldsymbol{y}-\boldsymbol{x}\| .
$$

But then

$$
\frac{\|\boldsymbol{e}\|}{\|\boldsymbol{b}\|}=\frac{\|\boldsymbol{A} \boldsymbol{d}\|}{\|\boldsymbol{c}\|}=\frac{\left\|\boldsymbol{A}^{-1}\right\|}{\|\boldsymbol{x}\|}\|\boldsymbol{A}\|\|\boldsymbol{y}-\boldsymbol{x}\|
$$

and (1) holds with equality.
(Continued on page 3.)

Problem 3 Eigenvalue bound

In this exercise we assume that $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ has eigenpairs $\left(\lambda_{j}, \boldsymbol{x}_{j}\right), j=$ $1, \ldots, n$, where the eigenvector matrix $\boldsymbol{X}=\left[\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right]$ is nonsingular. We know that $\boldsymbol{A}=\boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{-1}$, where $\boldsymbol{D}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. We let $\|\boldsymbol{A}\|_{2}:=\max _{\boldsymbol{x} \neq \mathbf{0}}\|\boldsymbol{A} \boldsymbol{x}\|_{2} /\|\boldsymbol{x}\|_{2}$ be the spectral norm of \boldsymbol{A}.

We want to show the following theorem:

Theorem 1

To any $\mu \in \mathbb{R}$ with $\mu-\lambda_{j} \neq 0$ for $j=1, \ldots, n$. and $\boldsymbol{x} \in \mathbb{R}^{n}$ with $\|\boldsymbol{x}\|_{2}=1$ we can find an eigenvalue λ of \boldsymbol{A} such that

$$
|\lambda-\mu| \leq K_{2}(\boldsymbol{X})\|\boldsymbol{r}\|_{2},
$$

where $\boldsymbol{r}:=\boldsymbol{A} \boldsymbol{x}-\mu \boldsymbol{x}$ and $K_{2}(\boldsymbol{X}):=\|\boldsymbol{X}\|_{2}\left\|\boldsymbol{X}^{-1}\right\|_{2}$.

$3 a$

Show that $\|\boldsymbol{D}\|_{2}=\rho(\boldsymbol{A}):=\max _{i}\left|\lambda_{i}\right|$.
Answer: Since $\|\boldsymbol{D}\|_{2}$ equals the square root of the largest eigenvalue of $\boldsymbol{D}^{T} \boldsymbol{D}$ we have

$$
\|\boldsymbol{D}\|_{2}=\sqrt{\rho\left(\boldsymbol{D}^{T} \boldsymbol{D}\right)}=\sqrt{\rho\left(\boldsymbol{D}^{2}\right)}=\sqrt{\rho(\boldsymbol{D})^{2}}=\rho(\boldsymbol{D})=\rho(\boldsymbol{A})
$$

3b

We define $\boldsymbol{D}_{1}:=\boldsymbol{D}-\mu \boldsymbol{I}$. Show that \boldsymbol{D}_{1} is nonsingular and $\left\|\boldsymbol{D}_{1}^{-1}\right\|_{2}=\frac{1}{\lambda-\mu}$, where $|\lambda-\mu|:=\min _{j}\left|\lambda_{j}-\mu\right|$.
Answer: \boldsymbol{D}_{1} is nonsingular since it is a diagonal matrix with nonzero diagonal elements $\lambda_{j}-\mu$ for $j=1, \ldots, n$. We have $\boldsymbol{D}_{1}^{-1}=\operatorname{diag}\left(\left(\lambda_{1}-\right.\right.$ $\left.\mu)^{-1}, \ldots,\left(\lambda_{n}-\mu\right)^{-1}\right)$. The result follows from problem 3a with $\boldsymbol{D}=\boldsymbol{D}_{1}$.

3c
Show that $\boldsymbol{X} \boldsymbol{D}_{1}^{-1} \boldsymbol{X}^{-1} \boldsymbol{r}=\boldsymbol{x}$, where $\boldsymbol{r}:=\boldsymbol{A} \boldsymbol{x}-\mu \boldsymbol{x}$.

Answer:

$$
\boldsymbol{X} \boldsymbol{D}_{1}^{-1} \boldsymbol{X}^{-1} \boldsymbol{r}=\left(\boldsymbol{X}(\boldsymbol{D}-\mu \boldsymbol{I}) \boldsymbol{X}^{-1}\right)^{-1} \boldsymbol{r}=(\boldsymbol{A}-\mu \boldsymbol{I})^{-1}(\boldsymbol{A}-\mu \boldsymbol{I}) \boldsymbol{x}=\boldsymbol{x}
$$

3d

Show Theorem 1.
Answer: Let $|\lambda-\mu|=\min _{j}\left|\lambda_{j}-\mu\right|$.

$$
1=\|\boldsymbol{x}\|_{2}=\left\|\boldsymbol{X} \boldsymbol{D}_{1}^{-1} \boldsymbol{X}^{-1} \boldsymbol{r}\right\|_{2} \leq\left\|\boldsymbol{D}_{1}^{-1}\right\|_{2} K_{2}(\boldsymbol{X})\|\boldsymbol{r}\|_{2}=\frac{K_{2}(\boldsymbol{X})\|\boldsymbol{r}\|_{2}}{\min _{j}\left|\lambda_{j}-\mu\right|}=\frac{K_{2}(\boldsymbol{X})\|\boldsymbol{r}\|_{2}}{|\lambda-\mu|} .
$$

But then the theorem follows.
(Continued on page 4.)

Problem 4 Matlab program

Recall that a square matrix \boldsymbol{A} is d-banded if $a_{i j}=0$ for $|i-j|>d$. Write a Matlab function $\mathrm{x}=\mathrm{backsolve}(\mathrm{A}, \mathrm{b}, \mathrm{d})$ that for a given nonsingular upper triangular d-banded matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{n}$ computes a solution \boldsymbol{x} to the system $\boldsymbol{A x}=\boldsymbol{b}$.

Answer:

```
function x=backsolve(A,b,d)
n=length(b); x=b;
x(n)=b(n)/A(n,n);
for k=n-1:-1:1
    uk=min(n,k+d);
    x(k)=(b(k)-A(k,k+1:uk)*x(k+1:uk))/A(k,k);
end
```

Good luck!

