UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination inINF-MAT 4350 — Numerical linear algebraDay of examination:7 December 2012Examination hours:0900-1300This problem set consists of 4 pages.Appendices:NonePermitted aids:None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All 9 part questions will be weighted equally.

Problem 1 Gauss-Seidel

Consider the matrix

$$\boldsymbol{A} := \begin{bmatrix} 4 & -lpha \\ -lpha & 1 \end{bmatrix}, \quad lpha \in \mathbb{R}.$$

1a

For what values of α is **A** symmetric positive definite?

Answer: **A** is symmetric for any α . Since $a_{11} > 0$, the matrix **A** is positive definite if and only if det(\mathbf{A}) = $4 - \alpha^2 > 0$ or $-2 < \alpha < 2$.

1b

For what values of α does Gauss Seidel's method converge?

Answer: Applying GS to the system

$$\begin{bmatrix} 4 & -\alpha \\ -\alpha & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} b \\ c \end{bmatrix}$$

we find $x_{k+1} = \frac{\alpha}{4}y_k + \frac{1}{4}b$ and $y_{k+1} = \alpha x_{k+1} + c = \alpha(\frac{\alpha}{4}y_k + \frac{1}{4}b) + c$. Thus

$$\begin{bmatrix} x_{k+1} \\ y_{k+1} \end{bmatrix} = \boldsymbol{G} \begin{bmatrix} x_k \\ y_k \end{bmatrix} + \boldsymbol{c}, \quad \boldsymbol{G} = \begin{bmatrix} 0 & \alpha/4 \\ 0 & \alpha^2/4 \end{bmatrix}$$

GS converges if and only if $\rho(\mathbf{G}) < 1$. Since \mathbf{G} has eigenvalues 0 and $\alpha^2/4$ this happens if and only if $-2 < \alpha < 2$ i.e., if and only if \mathbf{A} is positive definite.

(Continued on page 2.)

Problem 2 Perturbation

Let $\| \|$ be a vector norm on \mathbb{R}^n and for any $\boldsymbol{B} \in \mathbb{R}^{n \times n}$ let

$$\|\boldsymbol{B}\| := \max_{\boldsymbol{x} \neq \boldsymbol{0}} rac{\|\boldsymbol{B}\boldsymbol{x}\|}{\|\boldsymbol{x}\|}$$

be the associated operator norm of **B**. Suppose $A \in \mathbb{R}^{n \times n}$ is nonsingular.

2a

Show that for any $\boldsymbol{b}, \boldsymbol{e} \in \mathbb{R}^n$ with $\boldsymbol{b} \neq \boldsymbol{0}$

$$\frac{\|\boldsymbol{e}\|}{\|\boldsymbol{b}\|} \le \|\boldsymbol{A}\| \|\boldsymbol{A}^{-1}\| \frac{\|\boldsymbol{y} - \boldsymbol{x}\|}{\|\boldsymbol{x}\|},\tag{1}$$

where x and y are solutions of Ax = b and Ay = b + e. Hint: Use that A(y - x) = e and $x = A^{-1}b$.

Answer: Subtracting Ax = b from Ay = b + e we find A(y - x) = e. Taking norms

$$\|e\| \le \|A\| \|y - x\|, \quad \|x\| \le \|A^{-1}\| \|b\|.$$

But then $\frac{1}{\|\boldsymbol{b}\|} \leq \frac{\|\boldsymbol{A}^{-1}\|}{\|\boldsymbol{x}\|}$,

$$rac{\|m{e}\|}{\|m{b}\|} \leq \|m{A}\|\|m{y}-m{x}\|rac{\|m{A}^{-1}\|}{\|m{x}\|}.$$

and (1) follows.

2b

Show that we have equality in (1) for some vectors \boldsymbol{b} and \boldsymbol{e} . Hint: There are vectors \boldsymbol{c} and \boldsymbol{d} so that

$$\|m{A}^{-1}\| = rac{\|m{A}^{-1}m{c}\|}{\|m{c}\|}, \quad \|m{A}\| = rac{\|m{A}m{d}\|}{\|m{d}\|}.$$

You should not show this.

Answer: Define b := c and e := Ad. Then ||e||/||b|| = ||Ad||/||c||. Now

$$\frac{1}{\|\boldsymbol{c}\|} = \frac{\|\boldsymbol{A}^{-1}\|}{\|\boldsymbol{A}^{-1}\boldsymbol{c}\|} = \frac{\|\boldsymbol{A}^{-1}\|}{\|\boldsymbol{x}\|}, \quad \|\boldsymbol{A}\boldsymbol{d}\| = \|\boldsymbol{A}\|\|\boldsymbol{d}\| = \|\boldsymbol{A}\|\|\boldsymbol{A}^{-1}\boldsymbol{e}\| = \|\boldsymbol{A}\|\|\boldsymbol{y}-\boldsymbol{x}\|.$$

But then

$$\frac{\|\bm{e}\|}{\|\bm{b}\|} = \frac{\|\bm{A}\bm{d}\|}{\|\bm{c}\|} = \frac{\|\bm{A}^{-1}\|}{\|\bm{x}\|}\|\bm{A}\|\|\bm{y}-\bm{x}\|$$

and (1) holds with equality.

(Continued on page 3.)

Problem 3 Eigenvalue bound

In this exercise we assume that $A \in \mathbb{R}^{n \times n}$ has eigenpairs $(\lambda_j, \boldsymbol{x}_j), j = 1, \ldots, n$, where the eigenvector matrix $\boldsymbol{X} = [\boldsymbol{x}_1, \ldots, \boldsymbol{x}_n]$ is nonsingular. We know that $\boldsymbol{A} = \boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{-1}$, where $\boldsymbol{D} = \text{diag}(\lambda_1, \ldots, \lambda_n)$. We let $\|\boldsymbol{A}\|_2 := \max_{\boldsymbol{x} \neq \boldsymbol{0}} \|\boldsymbol{A}\boldsymbol{x}\|_2 / \|\boldsymbol{x}\|_2$ be the spectral norm of \boldsymbol{A} .

We want to show the following theorem:

Theorem 1

To any $\mu \in \mathbb{R}$ with $\mu - \lambda_j \neq 0$ for j = 1, ..., n. and $\boldsymbol{x} \in \mathbb{R}^n$ with $\|\boldsymbol{x}\|_2 = 1$ we can find an eigenvalue λ of \boldsymbol{A} such that

$$|\lambda - \mu| \le K_2(\boldsymbol{X}) \|\boldsymbol{r}\|_2,$$

where $r := Ax - \mu x$ and $K_2(X) := \|X\|_2 \|X^{-1}\|_2$.

3a

Show that $\|\boldsymbol{D}\|_2 = \rho(\boldsymbol{A}) := \max_i |\lambda_i|.$

Answer: Since $\|D\|_2$ equals the square root of the largest eigenvalue of $D^T D$ we have

$$\|\boldsymbol{D}\|_2 = \sqrt{\rho(\boldsymbol{D}^T\boldsymbol{D})} = \sqrt{\rho(\boldsymbol{D}^2)} = \sqrt{\rho(\boldsymbol{D})^2} = \rho(\boldsymbol{D}) = \rho(\boldsymbol{A}).$$

3b

We define $D_1 := D - \mu I$. Show that D_1 is nonsingular and $\|D_1^{-1}\|_2 = \frac{1}{\lambda - \mu}$, where $|\lambda - \mu| := \min_j |\lambda_j - \mu|$.

Answer: D_1 is nonsingular since it is a diagonal matrix with nonzero diagonal elements $\lambda_j - \mu$ for j = 1, ..., n. We have $D_1^{-1} = \text{diag} ((\lambda_1 - \mu)^{-1}, ..., (\lambda_n - \mu)^{-1})$. The result follows from problem **3a** with $D = D_1$.

3c

Show that $\boldsymbol{X}\boldsymbol{D}_1^{-1}\boldsymbol{X}^{-1}\boldsymbol{r} = \boldsymbol{x}$, where $\boldsymbol{r} := \boldsymbol{A}\boldsymbol{x} - \mu\boldsymbol{x}$.

Answer:

$$\boldsymbol{X}\boldsymbol{D}_{1}^{-1}\boldsymbol{X}^{-1}\boldsymbol{r} = \left(\boldsymbol{X}(\boldsymbol{D}-\boldsymbol{\mu}\boldsymbol{I})\boldsymbol{X}^{-1}\right)^{-1}\boldsymbol{r} = (\boldsymbol{A}-\boldsymbol{\mu}\boldsymbol{I})^{-1}(\boldsymbol{A}-\boldsymbol{\mu}\boldsymbol{I})\boldsymbol{x} = \boldsymbol{x}.$$

3d

Show Theorem 1.

Answer: Let $|\lambda - \mu| = \min_j |\lambda_j - \mu|$.

$$1 = \|\boldsymbol{x}\|_{2} = \|\boldsymbol{X}\boldsymbol{D}_{1}^{-1}\boldsymbol{X}^{-1}\boldsymbol{r}\|_{2} \le \|\boldsymbol{D}_{1}^{-1}\|_{2}K_{2}(\boldsymbol{X})\|\boldsymbol{r}\|_{2} = \frac{K_{2}(\boldsymbol{X})\|\boldsymbol{r}\|_{2}}{\min_{j}|\lambda_{j}-\mu|} = \frac{K_{2}(\boldsymbol{X})\|\boldsymbol{r}\|_{2}}{|\lambda-\mu|}$$

But then the theorem follows.

(Continued on page 4.)

Problem 4 Matlab program

Recall that a square matrix A is *d*-banded if $a_{ij} = 0$ for |i - j| > d. Write a Matlab function x=backsolve(A,b,d) that for a given nonsingular upper triangular *d*-banded matrix $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$ computes a solution x to the system Ax = b.

Answer:

```
function x=backsolve(A,b,d)
n=length(b); x=b;
x(n)=b(n)/A(n,n);
for k=n-1:-1:1
    uk=min(n,k+d);
    x(k)=(b(k)-A(k,k+1:uk)*x(k+1:uk))/A(k,k);
end
```

end

Good luck!