UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in: MAT-IN3110 - Introduction to numerical analysis
Day of examination: 5 December 2017
Examination hours: 0900-1300
This problem set consists of 3 pages.
Appendices: None
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All 9 part questions will be weighted equally.

Problem 1 Conditioning

Let $\left\|\|\right.$ be a vector norm on \mathbb{R}^{n} and for any $B \in \mathbb{R}^{n \times n}$ let

$$
\|B\|:=\max _{\mathbf{x} \neq 0} \frac{\|B \mathbf{x}\|}{\|\mathbf{x}\|}
$$

be the associated operator norm of B. Suppose $A \in \mathbb{R}^{n \times n}$ is nonsingular.
Show that for any $\mathbf{b}, \mathbf{e} \in \mathbb{R}^{n}$ with $\mathbf{b} \neq 0$

$$
\frac{\|\mathbf{e}\|}{\|\mathbf{b}\|} \leq\|A\|\left\|A^{-1}\right\| \frac{\|\mathbf{y}-\mathbf{x}\|}{\|\mathbf{x}\|}
$$

where \mathbf{x} and \mathbf{y} are solutions of $A \mathbf{x}=\mathbf{b}$ and $A \mathbf{y}=\mathbf{b}+\mathbf{e}$.
Hint: Observe that $A(\mathbf{y}-\mathbf{x})=\mathbf{e}$ and $\mathbf{x}=A^{-1} \mathbf{b}$.

Problem 2 LU

Find the $L U$ factorization of the matrix

$$
A=\left[\begin{array}{ll}
3 & 4 \\
5 & 6
\end{array}\right] .
$$

Problem 3 Matlab program

Recall that a square matrix A is d-banded if $a_{i j}=0$ for $|i-j|>d$. Write a Matlab function $\mathrm{x}=\mathrm{backsolve}(\mathrm{A}, \mathrm{b}, \mathrm{d})$ that for a given nonsingular upper triangular d-banded matrix $A \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^{n}$ computes a solution \mathbf{x} to the linear system $A \mathbf{x}=\mathbf{b}$.
(Continued on page 2.)

Problem 4 Polynomial interpolation

The divided difference $f\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ of a function f at the distinct points $x_{0}, x_{1}, \ldots, x_{n}$ is the leading coefficient of the polynomial p of degree at most n that interpolates f at $x_{0}, x_{1}, \ldots, x_{n}$. Using the Lagrange form of p, or otherwise, find $f\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ as a linear combination of $f\left(x_{0}\right), f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$.

Problem 5 A non-linear equation

$5 a$

We want to solve the equation

$$
\begin{equation*}
f(x)=x^{2}-A=0, \tag{1}
\end{equation*}
$$

for x where $A>0$ is a given constant. If $\left\{x_{k}\right\}$ is the sequence generated by Newton's method, show that

$$
x_{k+1}=\frac{1}{2}\left(x_{k}+\frac{A}{x_{k}}\right), \quad k=0,1,2, \ldots .
$$

5b

If $x_{*}>0$ is the root of f in (1), and the k-th error is $e_{k}=x_{k}-x_{*}$, show that

$$
e_{k+1}=e_{k}^{2}\left(\frac{1}{2 x_{k}}\right), \quad k=0,1,2, \ldots
$$

5c
Suppose $1 / 4 \leq A \leq 1$ and that the initial guess is $x_{0}=1$. Show (a) that

$$
x_{*} \leq x_{k+1} \leq x_{k}, \quad k=0,1,2, \ldots
$$

and (b)

$$
e_{k} \leq e_{0}^{\left(2^{k}\right)}, \quad k=0,1,2, \ldots
$$

Problem 6 Steepest descent

Suppose

$$
F(\mathrm{x})=\frac{1}{2} \mathbf{x}^{T} A \mathbf{x}-\mathbf{x}^{T} \mathbf{b}
$$

from some positive definite matrix $A \in \mathbb{R}^{n \times n}$ and vector $\mathbf{b} \in \mathbb{R}^{n}$, Suppose we want to find the unique minimum $\mathbf{x}_{*} \in \mathbb{R}^{n}$ of F using a descent method. If \mathbf{x} is the current approximation to \mathbf{x}_{*}, the next approximation has the form

$$
\mathrm{x}^{\prime}=\mathrm{x}+\omega \mathbf{d},
$$

(Continued on page 3.)
where \mathbf{d} is the search direction.
If

$$
\mathbf{g}=\nabla F(\mathbf{x})=A \mathbf{x}-\mathbf{b}
$$

denotes the gradient of F at \mathbf{x}, what is the descent condition on \mathbf{d} ? Assuming the descent condition holds, find \mathbf{x}^{\prime} by minimizing F in the direction \mathbf{d}.

Problem 7 Fourier series

What is the complex Fourier series $f_{N}(t)$ of order N, with respect to the period $T>0$, of a suitable function $f(t)$? Find $f_{N}(t)$ for

$$
f(t)=\cos (4 \pi t / T)+3 \sin (10 \pi t / T+\pi / 2),
$$

when (a) $N=2$ and (b) $N=8$. Hint: you don't need integration.
Good luck!

