UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in: MAT-IN3110 - Introduction to numerical analysis
Day of examination: 5 December 2017
Examination hours: 0900-1300
This problem set consists of 6 pages.
Appendices: None
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All 9 part questions will be weighted equally.

Problem 1 Conditioning

Let ||| be a vector norm on \mathbb{R}^{n} and for any $B \in \mathbb{R}^{n \times n}$ let

$$
\|B\|:=\max _{\mathbf{x} \neq 0} \frac{\|B \mathbf{x}\|}{\|\mathbf{x}\|}
$$

be the associated operator norm of B. Suppose $A \in \mathbb{R}^{n \times n}$ is nonsingular.
Show that for any $\mathbf{b}, \mathbf{e} \in \mathbb{R}^{n}$ with $\mathbf{b} \neq 0$

$$
\begin{equation*}
\frac{\|\mathbf{e}\|}{\|\mathbf{b}\|} \leq\|A\|\left\|A^{-1}\right\| \frac{\|\mathbf{y}-\mathbf{x}\|}{\|\mathbf{x}\|}, \tag{1}
\end{equation*}
$$

where \mathbf{x} and \mathbf{y} are solutions of $A \mathbf{x}=\mathbf{b}$ and $A \mathbf{y}=\mathbf{b}+\mathbf{e}$.
Hint: Use that $A(\mathbf{y}-\mathbf{x})=\mathbf{e}$ and $\mathbf{x}=A^{-1} \mathbf{b}$.
Answer: Subtracting $A \mathbf{x}=\mathbf{b}$ from $A \mathbf{y}=\mathbf{b}+\mathbf{e}$ we find $A(\mathbf{y}-\mathbf{x})=\mathbf{e}$. Taking norms

$$
\|\mathbf{e}\| \leq\|A\|\|\mathbf{y}-\mathrm{x}\|, \quad\|\mathbf{x}\| \leq\left\|A^{-1}\right\|\|\mathbf{b}\| .
$$

But then $\frac{1}{\|\mid \boldsymbol{b}\|} \leq \frac{\left\|A^{-1}\right\|}{\|\mathbf{x}\|}$,

$$
\frac{\|\mathbf{e}\|}{\|\mathbf{b}\|} \leq\|A\|\|\mathbf{y}-\mathbf{x}\| \frac{\left\|A^{-1}\right\|}{\|\mathbf{x}\|}
$$

and (1) follows.

Problem 2 LU

Find the $L U$ factorization of the matrix

$$
A=\left[\begin{array}{ll}
3 & 4 \\
5 & 6
\end{array}\right]
$$

Answer Let

$$
u_{1}^{T}=\left[\begin{array}{ll}
3 & 4
\end{array}\right], \quad l_{1}=\frac{1}{3}\left[\begin{array}{l}
3 \\
5
\end{array}\right]=\left[\begin{array}{c}
1 \\
5 / 3
\end{array}\right] .
$$

Then

$$
l_{1} u_{1}^{T}=\left[\begin{array}{cc}
3 & 4 \\
5 & 20 / 3
\end{array}\right]
$$

Then we let

$$
A_{1}=A-l_{1} u_{1}^{T}=\left[\begin{array}{cc}
0 & 0 \\
0 & -2 / 3
\end{array}\right]
$$

So now we set

$$
u_{2}^{T}=\left[\begin{array}{ll}
0 & -2 / 3
\end{array}\right], \quad l_{2}=-\frac{3}{2}\left[\begin{array}{c}
0 \\
-2 / 3
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

Then $A=L U$ where

$$
L=\left[\begin{array}{ll}
l_{1} & l_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
5 / 3 & 1
\end{array}\right], \quad U=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{cc}
3 & 4 \\
0 & -2 / 3
\end{array}\right] .
$$

Problem 3 Matlab program

Recall that a square matrix A is d-banded if $a_{i j}=0$ for $|i-j|>d$. Write a Matlab function $\mathrm{x}=\mathrm{backsolve}(\mathrm{A}, \mathrm{b}, \mathrm{d})$ that for a given nonsingular upper triangular d-banded matrix $A \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^{n}$ computes a solution \mathbf{x} to the linear system $A \mathbf{x}=\mathbf{b}$.
Answer:

```
function x=backsolve(A,b,d)
n=length(b); x=b;
x(n)=b(n)/A(n,n);
for k=n-1:-1:1
    uk=min(n,k+d);
    x(k)=(b(k)-A(k,k+1:uk)*x(k+1:uk))/A(k,k);
end
```


Problem 4 Polynomial interpolation

The divided difference $f\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ of a function f at the distinct points $x_{0}, x_{1}, \ldots, x_{n}$ is the leading coefficient of the polynomial p of degree at most n that interpolates f at $x_{0}, x_{1}, \ldots, x_{n}$. Using the Lagrange form of p, or otherwise, find $f\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ as a linear combination of $f\left(x_{0}\right), f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$.
Answer: The Lagrange form of p is

$$
p(x)=\sum_{i=0}^{n} \prod_{\substack{j=0 \\ j \neq i}}^{n} \frac{x-x_{j}}{x_{i}-x_{j}} f\left(x_{i}\right) .
$$

Therefore, writing

$$
p(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots,
$$

we see that the leading coefficient of p is

$$
c_{n}=\sum_{i=0}^{n} \prod_{\substack{j=0 \\ j \neq i}}^{n} \frac{1}{x_{i}-x_{j}} f\left(x_{i}\right),
$$

which is therefore the desired formula.

Problem 5 A non-linear equation

5a

We want to solve the equation

$$
\begin{equation*}
f(x)=x^{2}-A=0, \tag{2}
\end{equation*}
$$

for x where $A>0$ is a given constant. If $\left\{x_{k}\right\}$ is the sequence generated by Newton's method, show that

$$
\begin{equation*}
x_{k+1}=\frac{1}{2}\left(x_{k}+\frac{A}{x_{k}}\right), \quad k=0,1,2, \ldots \tag{3}
\end{equation*}
$$

Answer: Newton's method is

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}, \quad k=0,1,2, \ldots
$$

Since $f\left(x_{k}\right)=x_{k}^{2}-A$ and $f^{\prime}\left(x_{k}\right)=2 x_{k}$, we have

$$
\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}=\frac{x_{k}}{2}-\frac{A}{2 x_{k}},
$$

from which the formula follows.
(Continued on page 4.)

5b

If $x_{*}>0$ is the root of f in (2), and the k-th error is $e_{k}=x_{k}-x_{*}$, show that

$$
\begin{equation*}
e_{k+1}=e_{k}^{2}\left(\frac{1}{2 x_{k}}\right), \quad k=0,1,2, \ldots \tag{4}
\end{equation*}
$$

Answer: Since $A=x_{*}^{2}$, we find

$$
\begin{aligned}
e_{k+1} & =\frac{1}{2}\left(x_{k}+\frac{x_{*}^{2}}{x_{k}}\right)-x_{*} \\
& =\frac{1}{2 x_{k}}\left(x_{k}^{2}+x_{*}^{2}-2 x_{k} x_{*}\right) \\
& =\frac{1}{2 x_{k}}\left(x_{k}-x_{*}\right)^{2}=\frac{1}{2 x_{k}} e_{k}^{2} .
\end{aligned}
$$

5c
Suppose $1 / 4 \leq A \leq 1$ and that the initial guess is $x_{0}=1$. Show (a) that

$$
x_{*} \leq x_{k+1} \leq x_{k}, \quad k=0,1,2, \ldots
$$

and (b)

$$
e_{k} \leq e_{0}^{\left(2^{k}\right)}, \quad k=0,1,2, \ldots
$$

Answer: (a) If $1 / 4 \leq A \leq 1$ then $1 / 2 \leq x_{*} \leq 1$. By (4), $e_{1} \geq 0$. This means that $x_{1} \geq x_{*}>0$. Then by (4) again, $e_{2} \geq 0$. Continuing in this way we see that $e_{k} \geq 0$ for all k. From (3), we find that

$$
x_{k+1}-x_{k}=\frac{1}{2 x_{k}}\left(x_{*}^{2}-x_{k}^{2}\right) \leq 0,
$$

and so $x_{k+1} \leq x_{k}$.
(b) Since $x_{k} \geq x_{*} \geq 1 / 2$, by (4), $e_{k+1} \leq e_{k}^{2}$, and iterating this gives $e_{k} \leq e_{0}^{\left(2^{k}\right)}$.

Problem 6 Steepest descent

Suppose

$$
F(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} A \mathbf{x}-\mathbf{x}^{T} \mathbf{b}
$$

from some positive definite matrix $A \in \mathbb{R}^{n \times n}$ and vector $\mathbf{b} \in \mathbb{R}^{n}$, Suppose we want to find the unique minimum $\mathbf{x}_{*} \in \mathbb{R}^{n}$ of F using a descent method. If \mathbf{x} is the current approximation to \mathbf{x}_{*}, the next approximation has the form

$$
\mathbf{x}^{\prime}=\mathbf{x}+\omega \mathbf{d}
$$

where \mathbf{d} is the search direction.
(Continued on page 5.)

If

$$
\mathbf{g}=\nabla F(\mathbf{x})=A \mathbf{x}-\mathbf{b}
$$

denotes the gradient of F at \mathbf{x}, what is the descent condition on \mathbf{d} ? Assuming the descent condition holds, find \mathbf{x}^{\prime} by minimizing F in the direction \mathbf{d}.

Answer: The descent condition is that

$$
\left[\frac{d}{d \omega} F(\mathbf{x}+\omega \mathbf{d})\right]_{\omega=0}=\mathbf{d}^{T} \mathbf{g}<0
$$

We minimize the quadratic polynomial $F(\mathbf{x}+\omega \mathbf{d})$ with respect to ω. By the definition of F,

$$
\begin{aligned}
F(\mathbf{x}+\omega \mathbf{d}) & =\frac{1}{2}(\mathbf{x}+\omega \mathbf{d})^{T} A(\mathbf{x}+\omega \mathbf{d})-(\mathbf{x}+\omega \mathbf{d})^{T} \mathbf{b} \\
& =\frac{1}{2} \mathbf{x}^{T} A \mathbf{x}+\omega \mathbf{d}^{T} A \mathbf{x}+\frac{1}{2} \omega^{2} \mathbf{d}^{T} A \mathbf{d}-\mathbf{x}^{T} \mathbf{b}-\omega \mathbf{d}^{T} \mathbf{b} \\
& =F(\mathbf{x})+\omega \mathbf{d}^{T} \mathbf{g}+\frac{1}{2} \omega^{2} \mathbf{d}^{T} A \mathbf{d}
\end{aligned}
$$

The minimum of the quadratic is attained when

$$
\frac{d}{d \omega} F(\mathbf{x}+\omega \mathbf{d})=0
$$

i.e., when

$$
\mathbf{d}^{T} \mathbf{g}+\omega \mathbf{d}^{T} A \mathbf{d}=0
$$

which implies that

$$
\omega=-\frac{\mathbf{d}^{T} \mathbf{g}}{\mathbf{d}^{T} A \mathbf{d}}
$$

which is positive if the descent condition holds. Thus

$$
\mathbf{x}^{\prime}=\mathbf{x}-\frac{\mathbf{d}^{T} \mathbf{g}}{\mathbf{d}^{T} A \mathbf{d}} \mathbf{d} .
$$

Problem 7 Fourier series

What is the complex Fourier series $f_{N}(t)$ of order N, with respect to the period $T>0$, of a suitable function $f(t)$? Find $f_{N}(t)$ for

$$
f(t)=\cos (4 \pi t / T)+3 \sin (10 \pi t / T+\pi / 2),
$$

when (a) $N=2$ and (b) $N=8$. Hint: you don't need integration.
Answer: The complex Fourier series of f is

$$
f_{N}(t)=\sum_{n=-N}^{N} y_{n} e^{2 \pi i n t / T}
$$

where the coefficients y_{n} are such that f_{N} is the best L_{2} approximation to f in the interval $[0, T]$, i.e.,

$$
y_{n}=\frac{1}{T} \int_{0}^{T} f(t) e^{-2 \pi i n t / T} d t
$$

For the given f we can find the coefficients y_{n} directly;

$$
\begin{aligned}
f(t) & =\cos (4 \pi t / T)+3 \cos (10 \pi t / T) \\
& =\frac{1}{2}\left(e^{2 \pi i 2 t / T}+e^{-2 \pi i 2 t / T}\right)+\frac{3}{2}\left(e^{5 \pi i 2 t / T}+e^{-5 \pi i 2 t / T}\right),
\end{aligned}
$$

and so $y_{2}=y_{-2}=1 / 2$ and and $y_{5}=y_{-5}=3 / 2$ and all other coefficients are zero. So (a):

$$
f_{2}(t)=\frac{1}{2} e^{2 \pi i 2 t / T}+\frac{1}{2} e^{-2 \pi i 2 t / T}
$$

and

$$
f_{8}(t)=\frac{1}{2} e^{2 \pi i 2 t / T}+\frac{1}{2} e^{-2 \pi i 2 t / T}+\frac{3}{2} e^{5 \pi i 2 t / T}+\frac{3}{2} e^{-5 \pi i 2 t / T} .
$$

Good luck!

