UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:	MAT3110 — Introduction to numerical analysis
Day of examination:	14 December 2018
Examination hours:	0900-1300
This problem set consists of 2 pages.	
Appendices:	None
Permitted aids:	None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All 8 part questions will be weighted equally.

Problem 1 Matlab function

Write a Matlab (or Python) function [L,U] = mylu(A) that computes the LU factorization of an $n \times n$ matrix A, assuming that no pivoting is required.

Problem 2 Cholesky

Use the Cholesky algorithm to determine whether the matrix

$$A = \begin{bmatrix} 2 & 6 & -4 \\ 6 & 17 & 7 \\ -4 & 7 & 10 \end{bmatrix}$$

is positive-definite.

Problem 3 Matrix norm and SVD

3a

Recall that the 2-norm of a vector $\mathbf{x} = (x_1, \ldots, x_n)$ in \mathbb{R}^n is

$$\|\mathbf{x}\|_{2} = \left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1/2}$$

If U is an orthogonal $n \times n$ matrix, what is the 2-norm of $U\mathbf{x}$?

(Continued on page 2.)

3b

What is the definition of the 2-norm of a real $n \times n$ matrix A?

3c

Using the singular value decomposition of A, show that the 2-norm of A equals σ_1 , the largest singular value of A.

Problem 4 Iterative scheme

Consider the linear system $A\mathbf{x} = \mathbf{b}$ where A is a non-singular $n \times n$ matrix and **b** is a vector in \mathbb{R}^n . Suppose we try to find the solution **x** using the iterative scheme

$$(A - B)\mathbf{x}^{(k+1)} = -B\mathbf{x}^{(k)} + \mathbf{b}, \qquad k = 0, 1, 2,$$

with $\mathbf{x}^{(0)}$ some initial guess. Assuming A - B is non-singular, what condition on A, B, and \mathbf{b} is both necessary and sufficient for the sequence $\mathbf{x}^{(0)}, \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots$ to converge to \mathbf{x} ? Explain your answer.

Problem 5 Polynomial interpolation

The polynomial of degree $\leq n$ that interpolates a function $f : [-1, 1] \to \mathbb{R}$ at distinct points $x_0, x_1, \ldots, x_n \in [-1, 1]$ can be expressed as

$$p_n(x) = \sum_{i=0}^n \prod_{\substack{j=0\\j \neq i}}^n \frac{x - x_j}{x_i - x_j} f(x_i).$$

For approximating f, what is a good choice of the points x_i when n is large?

Problem 6 Non-linear least squares

Suppose we want to minimize a function $f : \mathbb{R}^n \to \mathbb{R}$ of the form

$$f(\mathbf{x}) = \frac{1}{2} \sum_{i=1}^{m} r_i(\mathbf{x})^2, \quad \mathbf{x} \in \mathbb{R}^n,$$

where $r_i : \mathbb{R}^n \to \mathbb{R}$, i = 1, ..., n, are the so-called residuals. What are the Newton and Gauss-Newton methods for this problem, and what are their advantages and disadvantages?

Good luck!