UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in: \quad| MAT3110 - Introduction to |
| :--- |
| numerical analysis |

Day of examination: 14 December 2018
Examination hours: 0900-1300
This problem set consists of 2 pages.
Appendices: None
Permitted aids: None

> Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All 8 part questions will be weighted equally.

Problem 1 Matlab function

Write a Matlab (or Python) function $[\mathrm{L}, \mathrm{U}]=m y l u(A)$ that computes the LU factorization of an $n \times n$ matrix A, assuming that no pivoting is required.

Problem 2 Cholesky

Use the Cholesky algorithm to determine whether the matrix

$$
A=\left[\begin{array}{ccc}
2 & 6 & -4 \\
6 & 17 & 7 \\
-4 & 7 & 10
\end{array}\right]
$$

is positive-definite.

Problem 3 Matrix norm and SVD

$3 a$

Recall that the 2-norm of a vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ in \mathbb{R}^{n} is

$$
\|\mathbf{x}\|_{2}=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}
$$

If U is an orthogonal $n \times n$ matrix, what is the 2-norm of $U \mathbf{x}$?

3b

What is the definition of the 2 -norm of a real $n \times n$ matrix A ?

3c

Using the singular value decomposition of A, show that the 2 -norm of A equals σ_{1}, the largest singular value of A.

Problem 4 Iterative scheme

Consider the linear system $A \mathbf{x}=\mathbf{b}$ where A is a non-singular $n \times n$ matrix and \mathbf{b} is a vector in \mathbb{R}^{n}. Suppose we try to find the solution \mathbf{x} using the iterative scheme

$$
(A-B) \mathbf{x}^{(k+1)}=-B \mathbf{x}^{(k)}+\mathbf{b}, \quad k=0,1,2,
$$

with $\mathbf{x}^{(0)}$ some initial guess. Assuming $A-B$ is non-singular, what condition on A, B, and \mathbf{b} is both necessary and sufficient for the sequence $\mathbf{x}^{(0)}, \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots$ to converge to \mathbf{x} ? Explain your answer.

Problem 5 Polynomial interpolation

The polynomial of degree $\leq n$ that interpolates a function $f:[-1,1] \rightarrow \mathbb{R}$ at distinct points $x_{0}, x_{1}, \ldots, x_{n} \in[-1,1]$ can be expressed as

$$
p_{n}(x)=\sum_{i=0}^{n} \prod_{\substack{j=0 \\ j \neq i}}^{n} \frac{x-x_{j}}{x_{i}-x_{j}} f\left(x_{i}\right) .
$$

For approximating f, what is a good choice of the points x_{i} when n is large?

Problem 6 Non-linear least squares

Suppose we want to minimize a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of the form

$$
f(\mathbf{x})=\frac{1}{2} \sum_{i=1}^{m} r_{i}(\mathbf{x})^{2}, \quad \mathbf{x} \in \mathbb{R}^{n}
$$

where $r_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, i=1, \ldots, n$, are the so-called residuals. What are the Newton and Gauss-Newton methods for this problem, and what are their advantages and disadvantages?

Good luck!

