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Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

All 8 part questions will be weighted equally.

Problem 1 Matlab function

Write a Matlab (or Python) function [L,U] = mylu(A) that computes the
LU factorization of an n×n matrix A, assuming that no pivoting is required.

Answer:

function [L,U] = mylu(A)

n = size(A,1);

L=zeros(n,n);

U=zeros(n,n);

B = A;

for k=1:n

U(k,:) = B(k,:);

L(:,k) = B(:,k) / B(k,k);

B = B - L(:,k) * U(k,:);

end

Problem 2 Cholesky

Use the Cholesky algorithm to determine whether the matrix

A =





2 6 −4
6 17 7
−4 7 10





(Continued on page 2.)
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is positive-definite.

Answer By a theorem from the course, A is positive-definite if and only if
it has an LDLT factorization where the diagonal elements of D are positive.

We initialize A0 = A. In the first step we use the first column of A0:

l1 =
1

2





2
6
−4



 =





1
3
−2



 ,

and the first diagonal element of A0:

D1,1 = 2.

Then we find

l1l
T
1 =





1 3 −2
3 9 −6
−2 −6 4



 ,

and so

D1,1l1l
T
1 =





2 6 −4
6 18 −12
−4 −12 8



 ,

and we let

A1 = A0 −D1,1l1l
T
1 =





0 0 0
0 −1 19
0 19 2



 .

In the second step of the algorithm we set D2,2 to be the second element of
the second column of A1. Thus D2,2 = −1. Thus A is not positive-definite.

Problem 3 Matrix norm and SVD

3a

Recall that the 2-norm of a vector x = (x1, . . . , xn) in R
n is

‖x‖2 =

(

n
∑

i=1

x2
i

)1/2

.

If U is an orthogonal n× n matrix, what is the 2-norm of Ux?

Answer: If U is orthogonal then UTU = I. Therefore

‖Ux‖22 = (Ux)T (Ux) = xTUTUx = xTx = ‖x‖22,

and so the 2-norm of Ux equals the 2-norm of x.

(Continued on page 3.)
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3b

What is the definition of the 2-norm of a real n× n matrix A?

Answer:

‖A‖2 = max
x 6=0

‖Ax‖2
‖x‖2

.

3c

Using the singular value decomposition of A, show that the 2-norm of A

equals σ1, the largest singular value of A.

Answer: The SVD of A is
A = USV T ,

where U, S, V ∈ R
n,n, U , V are orthogonal, and S is diagonal with diagonal

elements σ1, . . . , σn, the singular values of A, where σ1 ≥ σ2 ≥ · · · ≥ σn.
Therefore,

‖A‖2 = max
x 6=0

‖USV Tx‖2
‖x‖2

= max
x 6=0

‖SV Tx‖2
‖x‖2

,

because U is orthogonal. Letting x = V y,

‖A‖2 = max
V y 6=0

‖Sy‖2
‖V y‖2

= max
y 6=0

‖Sy‖2
‖y‖2

,

because V is also orthogonal. Therefore

‖A‖2 = max
y 6=0

(∑n
i=1 σ

2
i y

2
i

∑n
i=1 y

2
i

)1/2

.

Therefore,
‖A‖2 ≤ σ1

and the inequality is equality because we can choose y = (1, 0, . . . , 0).

Problem 4 Iterative scheme

Consider the linear system Ax = b where A is a non-singular n × n matrix
and b is a vector in R

n. Suppose we try to find the solution x using the
iterative scheme

(A− B)x(k+1) = −Bx(k) + b, k = 0, 1, 2,

with x(0) some initial guess. Assuming A − B is non-singular, what
condition on A, B, and b is both necessary and sufficient for the sequence
x(0),x(1),x(2), . . . to converge to x? Explain your answer.

Answer: Consider the k-th error,

e(k) := x(k) − x.

(Continued on page 4.)
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The equation
(A− B)x = −Bx+ b,

is also satisfied by x and subtracting it from

(A−B)x(k+1) = −Bx(k) + b

implies
(A− B)e(k+1) = −Be(k).

Under our assumption that A− B is non-singular this means that

e(k+1) = He(k), k = 0, 1, 2, . . . , (1)

where
H = −(A−B)−1B

By a theorem from the notes, the error vectors e(k) converge to zero as k → ∞
if and only if ρ(H) < 1, where ρ(H) is the spectral radius of H,

ρ(H) = max
i=1,...,n

|λi|,

and the λi are the eigenvalues of H.

Problem 5 Polynomial interpolation

The polynomial of degree ≤ n that interpolates a function f : [−1, 1] → R

at distinct points x0, x1, . . . , xn ∈ [−1, 1] can be expressed as

pn(x) =
n
∑

i=0

n
∏

j=0
j 6=i

x− xj

xi − xj

f(xi).

For approximating f , what is a good choice of the points xi when n is large?

Answer:
The interpolation error is given by

e(x) =
f (n+1)(ξ)

(n+ 1)!
ω(x), x ∈ [−1, 1],

where ξ ∈ [−1, 1] and

ω(x) =
n
∏

i=0

(x− xi).

We can minimize the absolute value of ω in [−1, 1] by choosing

ω(x) = 2−nTn+1(x),

where Tn+1 is the Chebyshev polynomial

Tn+1(x) = cos((n+ 1) arccos(x)).

Thus a good choice of x0, . . . , xn is the zeros of Tn+1 which are

xi = cos

(

π

2

2i+ 1

n+ 1

)

, i = 0, 1, . . . , n.

(Continued on page 5.)
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Problem 6 Non-linear least squares

Suppose we want to minimize a function f : Rn → R of the form

f(x) =
1

2

m
∑

i=1

ri(x)
2, x ∈ R

n, (2)

where ri : R
n → R, i = 1, . . . , n, are the so-called residuals. What are the

Newton and Gauss-Newton methods for this problem, and what are their
advantages and disadvantages?

Answer: The Newton method for minimizing f is Newton’s method for
root-finding applied to ∇f(x), which is the iteration

x(k+1) = x(k) − (∇2f(x(k)))−1∇f(x(k)).

An advantage of this method is that it has quadratic convergence if it
converges.

The Gauss-Newton method is a simplification of the Newton method.
Differentiating (2) with respect to xj gives

∂f

∂xj

=
m
∑

i=1

∂ri

∂xj

ri,

and so the gradient of f is
∇f = JT

r r,

where r = [r1, . . . , rm]
T and Jr ∈ R

m,n is the Jacobian of r,

Jr =

[

∂ri

∂xj

]

i=1,...,m,j=1,...,n

.

Differentiating again, with respect to xk, gives

∂2f

∂xj∂xk

=
m
∑

i=1

(

∂ri

∂xj

∂ri

∂xk

+ ri
∂2ri

∂xj∂xk

)

,

and so the Hessian of f is

∇2f = JT
r Jr +Q,

where

Q =
m
∑

i=1

ri∇
2ri.

The Gauss-Newton method is the result of neglecting the term Q, i.e., making
the approximation

∇2f ≈ JT
r Jr. (3)

Thus the Gauss-Newton iteration is

x(k+1) = x(k) − (Jr(x
(k))TJr(x

(k)))−1Jr(x
(k))T r(x(k)).

In general the Gauss-Newton method will not converge quadratically. On
the other hand it is easier to implement and it is more robust than Newton’s
method because the search direction is always a descent direction.

Good luck!


