UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in: \quad| MAT3110 - Introduction to |
| :--- |
| |
| numerical analysis |

Day of examination: 18 December 2019
Examination hours: 0900-1300
This problem set consists of 3 pages.
Appendices: None
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All 10 part questions will be weighted equally.

Problem 1 Matlab function

Write a Matlab (or Python) function [L, D] = myCholesky (A) that computes a Cholesky factorization $A=L D L^{T}$ of an $n \times n$ symmetric, positive definite matrix A.

Problem 2 QR

Consider the least squares solution to $A \mathbf{x} \approx \mathbf{b}$ where

$$
A=\left[\begin{array}{cc}
3 & -1 \\
0 & 4 \\
0 & 3
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
5 \\
7 \\
-1
\end{array}\right]
$$

2a
Find a reduced QR factorization of A, i.e., $A=Q_{1} R_{1}$ for $Q_{1} \in \mathbb{R}^{3,2}$ and $R_{1} \in \mathbb{R}^{2,2}$, where Q has orthonormal columns and R_{1} is upper triangular.

2b

Using Q_{1} and R_{1} find the solution \mathbf{x}.

Problem 3 SVD

Consider the matrix

$$
A=\left[\begin{array}{cc}
1 & 8 / 3 \\
0 & 1
\end{array}\right]
$$

3a

Given that one eigenpair $\left(\lambda_{1}, \mathbf{v}_{1}\right)$ of $A^{T} A$ is

$$
\lambda_{1}=9, \quad \mathbf{v}_{1}=\frac{1}{\sqrt{10}}\left[\begin{array}{l}
1 \\
3
\end{array}\right],
$$

find the other eigenpair $\left(\lambda_{2}, \mathbf{v}_{2}\right)$, with \mathbf{v}_{2} normalized.

3b

By letting

$$
V=\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right], \quad D=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right], \quad \text { and } \quad U=A V D^{-1 / 2}
$$

(or otherwise), find an SVD of A.

Problem 4 Interpolation

Let f be a function with four continuous derivatives in the interval $I=$ $[-2 h, 2 h]$, for some $h>0$. Let $p(x)$ be the polynomial of degree ≤ 3 such that $p(j h)=f(j h)$ for $j=-2,-1,1,2$. Show that for $x \in[-h, h]$,

$$
|f(x)-p(x)| \leq \frac{1}{6} h^{4} M_{4}, \quad \text { where } \quad M_{4}=\max _{x \in I}\left|f^{(4)}(x)\right|
$$

Problem 5 Bernstein basis

A Bézier curve of degree n in \mathbb{R}^{2} is a parametric curve $\mathbf{p}(t)=\sum_{i=0}^{n} B_{i, n}(t) \mathbf{c}_{i}$ with control points $\mathbf{c}_{0}, \mathbf{c}_{1}, \ldots, \mathbf{c}_{n} \in \mathbb{R}^{2}$ and Bernstein basis functions

$$
B_{i, n}(t)=\binom{n}{i} t^{i}(1-t)^{n-i}
$$

where $\binom{n}{i}=\frac{n!}{i!(n-i)!}$. The first derivative $\mathbf{p}^{\prime}(t)$ can be expressed as a Bézier curve of degree $n-1$. What are its control points? Explain your answer.

Problem 6 Multivariate Newton's method

6a

Write down Newton's method for minimizing a function $f(\mathbf{x})$, where $\mathbf{x}=$ $(x, y) \in \mathbb{R}^{2}$ and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
(Continued on page 3.)

6b

Suppose $f(\mathbf{x})=x^{4}+2 x^{2} y^{2}+y^{4}$. If $\mathbf{x}=(a, a)$ for some $a \in \mathbb{R}$, show that the gradient and Hessian of f at \mathbf{x} are

$$
\nabla f(\mathbf{x})=8 a^{3}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \text { and } \quad H f(\mathbf{x})=8 a^{2}\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

6c
If the start vector is $\mathbf{x}^{(0)}=(a, a)$ for some $a \neq 0$, find the next iterate, $\mathbf{x}^{(1)}$, and deduce the rate of convergence to the global minimizer $(0,0)$ in this case.

Good luck!

