UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in: \quad| MAT3110 - Introduction to |
| :--- |
| numerical analysis |

Day of examination: 18 December 2019
Examination hours: 0900-1300
This problem set consists of 6 pages.
Appendices: None
Permitted aids: None

> Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All 10 part questions will be weighted equally.

Problem 1 Matlab function

Write a Matlab (or Python) function [L,D] = myCholesky (A) that computes a Cholesky factorization $A=L D L^{T}$ of an $n \times n$ symmetric, positive definite matrix A.

Answer:

```
function [L,D] = myCholesky(A)
n = size(A,1);
L=zeros(n,n);
D=zeros(n,n);
B = A;
for k=1:n
    L(:,k) = B(:,k) / B(k,k);
    D(k,k) = B (k,k);
    B = B - D(k,k) * L(:,k) * (L(:,k))';
end
```


Problem 2 QR

Consider the least squares solution to $A \mathbf{x} \approx \mathbf{b}$ where

$$
A=\left[\begin{array}{cc}
3 & -1 \\
0 & 4 \\
0 & 3
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
5 \\
7 \\
-1
\end{array}\right]
$$

(Continued on page 2.)

$2 a$

Find a reduced QR factorization of A, i.e., $A=Q_{1} R_{1}$ for $Q_{1} \in \mathbb{R}^{3,2}$ and $R_{1} \in \mathbb{R}^{2,2}$, where Q has orthonormal columns and R_{1} is upper triangular.

Answer: We apply Gram-Schmidt orthonormalization to the columns $\mathbf{a}_{1}, \mathbf{a}_{2}$ of A.

Step 1. Let $\mathbf{w}=\mathbf{a}_{1}$. Then

$$
\mathbf{q}_{1}=\frac{\mathbf{w}}{\|\mathbf{w}\|}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

and $R_{11}=\|\mathbf{w}\|=3$.
Step 2. Let $R_{12}=\left\langle\mathbf{q}_{1}, \mathbf{a}_{2}\right\rangle=-1$ and

$$
\mathbf{w}=\mathbf{a}_{2}-R_{2,1} \mathbf{q}_{1}=\left[\begin{array}{l}
0 \\
4 \\
3
\end{array}\right] .
$$

Then let

$$
\mathbf{q}_{2}=\frac{\mathbf{w}}{\|\mathbf{w}\|}=\left[\begin{array}{c}
0 \\
4 / 5 \\
3 / 5
\end{array}\right]
$$

and $R_{22}=\|\mathrm{w}\|=5$.
Thus,

$$
Q_{1}=\left[\begin{array}{cc}
1 & 0 \\
0 & 4 / 5 \\
0 & 3 / 5
\end{array}\right], \quad R_{1}=\left[\begin{array}{cc}
3 & -1 \\
0 & 5
\end{array}\right]
$$

2b

Using Q_{1} and R_{1} find the solution \mathbf{x}.
Answer: The solution is found by solving

$$
R_{1} \mathbf{x}=Q_{1}^{T} \mathbf{b}
$$

i.e.,

$$
\begin{array}{r}
3 x_{1}-x_{2}=5, \\
5 x_{2}=5,
\end{array}
$$

and so $x_{2}=1$ and $x_{1}=2$.

Problem 3 SVD

Consider the matrix

$$
A=\left[\begin{array}{cc}
1 & 8 / 3 \\
0 & 1
\end{array}\right]
$$

(Continued on page 3.)

3a

Given that one eigenpair $\left(\lambda_{1}, \mathbf{v}_{1}\right)$ of $A^{T} A$ is

$$
\lambda_{1}=9, \quad \mathbf{v}_{1}=\frac{1}{\sqrt{10}}\left[\begin{array}{l}
1 \\
3
\end{array}\right],
$$

find the other eigenpair $\left(\lambda_{2}, \mathbf{v}_{2}\right)$, with \mathbf{v}_{2} normalized.
Answer:

$$
B:=A^{T} A=\left[\begin{array}{cc}
1 & 0 \\
8 / 3 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 8 / 3 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 8 / 3 \\
8 / 3 & 73 / 9
\end{array}\right] .
$$

Its eigenvalues satisfy the equation

$$
\operatorname{det}(B-\lambda I)=0,
$$

i.e.,

$$
\lambda^{2}-\frac{82}{9} \lambda+1=0,
$$

whose roots are $\lambda_{1}=9$ and $\lambda_{2}=1 / 9$. We are given \mathbf{v}_{1}. If the other eigenvector is $\mathbf{v}_{2}=[x, y]^{T}$ then

$$
B\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{1}{9}\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

So we can take $x=3$ and $y=-1$, and normalizing gives

$$
\mathbf{v}_{2}=\frac{1}{\sqrt{10}}\left[\begin{array}{c}
3 \\
-1
\end{array}\right] .
$$

3b

By letting

$$
V=\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right], \quad D=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right], \quad \text { and } \quad U=A V D^{-1 / 2}
$$

(or otherwise), find an SVD of A.
Answer: We have

$$
\Sigma=D^{1 / 2}=\left[\begin{array}{cc}
3 & 0 \\
0 & 1 / 3
\end{array}\right],
$$

and

$$
D^{-1 / 2}=\left[\begin{array}{cc}
1 / 3 & 0 \\
0 & 3
\end{array}\right],
$$

Then

$$
V D^{-1 / 2}=\frac{1}{\sqrt{10}}\left[\begin{array}{cc}
1 & 3 \\
3 & -1
\end{array}\right]\left[\begin{array}{cc}
1 / 3 & 0 \\
0 & 3
\end{array}\right]=\frac{1}{\sqrt{10}}\left[\begin{array}{cc}
1 / 3 & 9 \\
1 & -3
\end{array}\right] .
$$

Therefore,

$$
U=\frac{1}{\sqrt{10}}\left[\begin{array}{cc}
1 & 8 / 3 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 / 3 & 9 \\
1 & -3
\end{array}\right]=\frac{1}{\sqrt{10}}\left[\begin{array}{cc}
3 & 1 \\
1 & -3
\end{array}\right] .
$$

The SVD of A is $A=U \Sigma V^{T}$ and its singular values are $\sigma_{1}=3, \sigma_{2}=1 / 3$.
(Continued on page 4.)

Problem 4 Interpolation

Let f be a function with four continuous derivatives in the interval $I=$ $[-2 h, 2 h]$, for some $h>0$. Let $p(x)$ be the polynomial of degree ≤ 3 such that $p(j h)=f(j h)$ for $j=-2,-1,1,2$. Show that for $x \in[-h, h]$,

$$
|f(x)-p(x)| \leq \frac{1}{6} h^{4} M_{4}, \quad \text { where } \quad M_{4}=\max _{x \in I}\left|f^{(4)}(x)\right| .
$$

Answer:

The interpolation error is given by

$$
e(x)=f(x)-p(x)=\omega(x) \frac{f^{(4)}(\xi)}{4!}
$$

where

$$
\begin{aligned}
\omega(x) & =(x+2 h)(x+h)(x-h)(x-2 h) \\
& =\left(x^{2}-4 h^{2}\right)\left(x^{2}-h^{2}\right) \\
& =x^{4}-5 h^{2} x^{2}+4 h^{4} .
\end{aligned}
$$

If $x \in[-h, h]$ then $\xi \in I$, and so

$$
\begin{equation*}
|f(x)-p(x)| \leq \frac{1}{24} \max _{x \in[-h, h]}|\omega(x)| M_{4} \tag{1}
\end{equation*}
$$

The maximum of $|\omega(x)|$ is attained either at the end points of the interval $[-h, h]$ or at a point $x \in(-h, h)$ where $\omega^{\prime}(x)=0$. We have $\omega^{\prime}(x)=$ $4 x^{3}-10 h^{2} x$. The only point in $(-h, h)$ where $\omega^{\prime}(x)=0$ is $x=0$. This implies

$$
\max _{x \in[-h, h]}|\omega(x)|=\max \{|\omega(-h)|,|\omega(0)|,|\omega(h)|\}=|\omega(0)|=4 h^{4} .
$$

Putting this into (1), we obtain

$$
|f(x)-p(x)| \leq \frac{1}{6} h^{4} M_{4}
$$

Problem 5 Bernstein basis

A Bézier curve of degree n in \mathbb{R}^{2} is a parametric curve $\mathbf{p}(t)=\sum_{i=0}^{n} B_{i, n}(t) \mathbf{c}_{i}$ with control points $\mathbf{c}_{0}, \mathbf{c}_{1}, \ldots, \mathbf{c}_{n} \in \mathbb{R}^{2}$ and Bernstein basis functions

$$
B_{i, n}(t)=\binom{n}{i} t^{i}(1-t)^{n-i},
$$

where $\binom{n}{i}=\frac{n!}{i!(n-i)!}$. The first derivative $\mathbf{p}^{\prime}(t)$ can be expressed as a Bézier curve of degree $n-1$. What are its control points? Explain your answer.

Answer: The derivative of \mathbf{p} is

$$
\mathbf{p}^{\prime}(t)=\sum_{i=0}^{n} B_{i, n}^{\prime}(t) \mathbf{c}_{i},
$$

and we can express $B_{i, n}^{\prime}(t)$ in terms of Bernstein polynomials of lower degree. By the product rule,

$$
\begin{aligned}
B_{i, n}^{\prime}(t) & =\frac{n!}{i!(n-i)!}\left(i t^{i-1}(1-t)^{n-i}-t^{i}(n-i)(1-t)^{n-i-1}\right) \\
& =\frac{n!}{(i-1)!(n-i)!} t^{i-1}(1-t)^{n-i}-\frac{n!}{i!(n-i-1)!} t^{i}(1-t)^{n-i-1} \\
& =n\left(B_{i-1, n-1}(t)-B_{i, n-1}(t)\right)
\end{aligned}
$$

where $B_{-1, n-1}$ and $B_{n, n-1}$ are defined to be zero. Therefore,

$$
\begin{aligned}
\mathbf{p}^{\prime}(t) & =n \sum_{i=0}^{n}\left(B_{i-1, n}(t)-B_{i, n-1}(t)\right) \mathbf{c}_{i} \\
& =n\left(\sum_{i=1}^{n} B_{i-1, n}(t) \mathbf{c}_{i}-\sum_{i=0}^{n-1} B_{i, n}(t) \mathbf{c}_{i}\right) \\
& =n\left(\sum_{i=0}^{n-1} B_{i, n}(t) \mathbf{c}_{i+1}-\sum_{i=1}^{n-1} B_{i, n}(t) \mathbf{c}_{i}\right) \\
& =n \sum_{i=0}^{n-1} B_{i, n}(t)\left(\mathbf{c}_{i+1}-\mathbf{c}_{i}\right),
\end{aligned}
$$

and so the control points are $n\left(\mathbf{c}_{i+1}-\mathbf{c}_{i}\right), i=0,1, \ldots, n-1$.

Problem 6 Multivariate Newton's method

$6 a$

Write down Newton's method for minimizing a function $f(\mathbf{x})$, where $\mathbf{x}=$ $(x, y) \in \mathbb{R}^{2}$ and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
Answer: Newton's method is the root-finding method applied to the gradient $\nabla f(\mathbf{x})$, which is

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-\left[H f\left(\mathbf{x}^{(k)}\right)\right]^{-1} \nabla f\left(\mathbf{x}^{(k)}\right), \quad k=0,1,2, \ldots,
$$

with $\mathbf{x}^{(0)} \in \mathbb{R}^{2}$ an initial guess.

6b

Suppose $f(\mathbf{x})=x^{4}+2 x^{2} y^{2}+y^{4}$. If $\mathbf{x}=(a, a)$ for some $a \in \mathbb{R}$, show that the gradient and Hessian of f at \mathbf{x} are

$$
\nabla f(\mathbf{x})=8 a^{3}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \text { and } \quad H f(\mathbf{x})=8 a^{2}\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

Answer: We have

$$
\nabla f(\mathbf{x})=\left[\begin{array}{l}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y}
\end{array}\right]=\left[\begin{array}{l}
4 x^{3}+4 x y^{2} \\
4 x^{2} y+4 y^{3}
\end{array}\right]
$$

and

$$
H f(\mathbf{x})=\left[\begin{array}{ll}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\
\frac{\partial^{2} f}{\partial x \partial y} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}\right]=\left[\begin{array}{cc}
12 x^{2}+4 y^{2} & 8 x y \\
8 x y & 4 x^{2}+12 y^{2}
\end{array}\right] .
$$

Letting $(x, y)=(a, a)$ gives the claimed formulas.

6 c

If the start vector is $\mathbf{x}^{(0)}=(a, a)$ for some $a \neq 0$, find the next iterate, $\mathbf{x}^{(1)}$, and deduce the rate of convergence to the global minimizer $(0,0)$ in this case.

Answer: Since

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]^{-1}=\frac{1}{3}\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right],
$$

we find

$$
\mathbf{x}^{(1)}=\mathbf{x}^{(0)}-\frac{1}{24 a^{2}}\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right] 8 a^{3}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\mathbf{x}^{(0)}-\frac{a}{3}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\frac{2}{3} \mathbf{x}^{(0)} .
$$

This formula repeats,

$$
\mathbf{x}^{(k+1)}=\frac{2}{3} \mathbf{x}^{(k)}
$$

Since the solution is $\mathbf{x}_{*}=(0,0)$, the k-th error $\mathbf{e}^{(k)}=\mathbf{x}^{(k)}-\mathbf{x}_{*}$ satisfies the same equation,

$$
\mathbf{e}^{(k+1)}=\frac{2}{3} \mathbf{e}^{(k)} .
$$

Thus the method converges, but only linearly.
Good luck!

