
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Exam in: MAT3110/MAT4110 –– Introduction to
numerical analysis

Day of examination: 19 January 2021

Examination hours: 09:00 – 13:00

This problem set consists of 7 pages.

Appendices: None

Permitted aids: All written aids

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Note:

• There are in total 11 subproblems (1, 2a, 2b, . . . ), and you can get
5–10 points for each sub-problem, for a total of 100 points.

• All answers must be justified.

Problem 1 Root finding

Let f(x) = cos(x) − x. This function has a single root x0 somewhere in
[0, 1], and we wish to compute it.

1a (10 points)

Perform two steps with both the bisection method and Newton’s method.
Justify your choice of starting values.

1b (10 points)

Which of the two methods can we expect to be the most accurate after
several iterations? Justify your answer.

Solution:

1a

For the bisection method we choose x0 = 0, x1 = 1. Then f(x0) = 1 > 0
and f(x1) = cos(1) − 1 < 0. Since f is continuous, it has a zero in
(x0, x1), and the bisection method will be able to find it. We compute

x2 =
x0 + x1

2
=

1

2

(Continued on page 2.)
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and note that f(x2) = cos(1/2)− 1/2 > 0, and therefore the new interval
will be (x2, x1). We finally get

x3 =
x1 + x2

2
=

3

4
.

For Newton’s method, we note that f ′(x) = − sin(x) − 1, which
is nonzero in [0, 1]. Hence, as long as the iteration stays in [0, 1], the
method will converge. We set e.g. x0 = 0 and get

x1 = x0 −
f(x0)

f ′(x0)
= − 1

−1
= 1,

x2 = x1 −
f(x1)

f ′(x1)
= 1− cos(1)− 1

− sin(1)− 1
≈ 0.7504.

1b

The bisection method converges linearly, while Newton’s method
converges quadratically, so we can expect Newton’s method to be the
most accurate.

Problem 2 Polynomial interpolation (10 points)

Let f : [0, 2]→ R be a given function and let n ∈ N. We wish to interpolate
f using an n-th order polynomial p.

• Explain how we should do this in order to minimize the maximal error
‖f − p‖C([0,2]) = supx∈[0,2] |f(x)− p(x)|.

• Give an estimate of ‖f − p‖C([0,2]).

Solution: Assume first that we are on the interval [−1, 1], and let
x0, . . . , xn ∈ [−1, 1] be distinct interpolation points. We let p interpolate
f over these points:

p(x) =
n∑
k=0

f(xk)
∏

l=0,...,n
l 6=k

x− xl
xk − xl

.

The basic error estimate is

‖f − p‖C([−1,1]) 6
‖f (n+1)‖C([−1,1])

(n+ 1)!
‖wn‖C([−1,1])

where wn(x) =
∏n
k=0(x − xk). The term ‖wn‖C([−1,1]) is the least

possible when x0, . . . , xn are chosen as the Chebysheff points, yielding
‖wn‖C([−1,1]) = 2−n, and therefore

‖f − p‖C([−1,1]) 6
‖f (n+1)‖C([−1,1])

2n(n+ 1)!
.

(Continued on page 3.)
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Any other choice of interpolation points will yield a larger right-hand
side.

To transform this analysis to the interval [0, 2], it is enough to note
that the two intervals are of the same length, and that translating a
function does not change its norm, so the same results apply:

‖f − p‖C([0,2]) 6
‖f (n+1)‖C([0,2])

2n(n+ 1)!
.

Problem 3 Polynomial interpolation

Let f : [0, 1]→ R be the function f(x) = cos(2x)− ex. For some n ∈ N, let
p be the n-th order polynomial which interpolates f over the uniform grid
0, 1/n, . . . , 1.

3a (10 points)

Prove that ‖f − p‖C([0,1]) → 0 as n→∞.

(Here, ‖f − p‖C([0,1]) = supx∈[0,1] |f(x)− p(x)|.)

3b (10 points)

How large must n be in order to guarantee that ‖f − p‖C([0,1]) 6 10−10?

Hint: In this problem you might (or might not) need Stirling’s approxima-
tion:

m! > mme−m.

Solution: The basic error estimate is: For every x ∈ [0, 1] there is some
ξ ∈ [0, 1] such that

|f(x)− p(x)| 6 |f
(n+1)(ξ)|

(n+ 1)!

n∏
k=0

|x− xk|.

We have
|f (m)(ξ)| 6 | dmdξm cos(2ξ)|+ | dmdξm e

ξ| 6 2m + e.

Moreover, |x− xk| 6 1, so we get

|f(x)− p(x)| 6 2n+1 + 1

(n+ 1)!
∀ x ∈ [0, 1].

Using Stirling’s formula we get

‖f − p‖C([0,1]) 6
2n+1 + 1

(n+ 1)!
6
en+1(2n+1 + 1)

(n+ 1)n+1
.

3a

It is clear that the expression above converges to zero as n→∞.

(Continued on page 4.)
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3b

Testing different values of n shows that n = 29 gives an upper bound
of ≈ 4.3× 10−11.

Alternative solution: If, say, x ∈ [xm, xm+1] then

n∏
k=0

|x− xk| =
1

nn+1

n∏
k=0

|xn− k| 6 (m+ 1)!(n−m)!

nn+1
6

(n+ 1)!

nn+1
,

where the last inequality follows from 1 6
(
n+1
m+1

)
= (n+1)!

(m+1)!(n−m)! . We
get

|f(x)− p(x)| 6 ‖f
(n+1)‖

(n+ 1)!

(n+ 1)!

nn+1
6

2n+1 + 1

nn+1
.

3a

It is clear that 2n+1+1
nn+1 → 0 as n→∞.

3b

With this improved estimate we find that n = 12 gives an upper bound
∼ 7.66× 10−11.

Problem 4 QR factorization

Let A, Q and R be the matrices

A =

 0 1√
2 3
√

2
0 1

 , R =
√

2

1 3
0 1
0 0

 , Q =
1√
2

 0 1 1√
2 0 0

0 1 −1

 .

Note that A = QR (you don’t have to show this).

4a (5 points)

Explain what it means that QR is the QR factorization of A. Justify your
answer.

4b (10 points)

Find the least squares solution of the equation

Ax = b, where b =

1
2
3

 .

Solution:

(Continued on page 5.)
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4a

A QR factorization consists of an orthogonal matrix Q and an upper
triangular matrix R (with 1’s as its first nonzero element in each row,
if the factorization is in normal form). It is straightforward to see that
QTQ = I, so Q is orthogonal, and that R is upper triangular.

4b

We wish to minimize ‖Ax− b‖ = ‖Rx−QTb‖. Write

R =

(
R1

0

)
, QTb =

(
c1
c2

)
, R1 =

√
2

(
1 3
0 1

)
, c1 ∈ R2, c2 ∈ R.

Then ‖Ax− b‖2 = ‖Rx−QTb‖2 = ‖R1x− c1‖2 + ‖c2‖2, so we need to
minimize the first term; to this end, we solve R1x = c1. We compute

c1 =

(
2

2
√

2

)
⇒ x = R−11 c1 =

(√
2− 6
2

)
.

Problem 5 SVD (10 points)

Compute the singular value decomposition (SVD) of

A =

(
1 2
3 6

)
.

Hint: You may use the fact that one of the eigenpairs of the normal matrix

ATA is λ1 = 50, v1 = 1√
5

(
1
2

)
.

Solution: We see that A is non-invertible, so ATA must also be
non-invertible, whence the second eigenvalue is λ2 = 0. The second
eigenvector is chosen such that V =

(
v1 v2

)
is orthogonal; this is

achieved by letting v2 = 1√
5

(
2
−1

)
. We get the two singular values

σ1 =
√

50 = 5
√

2, σ2 = 0.

Setting S = diag(σ1, σ2) we want to find an orthogonal matrix U such
that A = USV T, or US = AV . Writing U =

(
u1 u2

)
, we have

US =
(
σ1u1 0

)
⇒ u1 =

1

σ1
Av1 =

1√
10

(
1
3

)
.

Finally, we let u2 be such that U is orthogonal: u2 = 1√
10

(
3
−1

)
. Thus,

A = USV T with

U =
1√
10

(
1 3
3 −1

)
, S =

(
5
√

2
0

)
, V =

1√
5

(
1 2
2 −1

)
.

(Continued on page 6.)
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Problem 6

We wish to approximate the integral I(f) =
∫ 20
0 f(x) dx of a function f .

6a (5 points)

If we wish to approximate I(f) using an 5-point quadrature rule, which
quadrature rule should we choose to make the error as small as possible?
Justify your answer.

6b (10 points)

Recall that the Gauss quadrature of order 3 on the interval [−1, 1] is∫ 1

−1
g(x) dx ≈ f

(
−
√

1/3
)

+ f
(√

1/3
)
. (1)

Write down the composite integration rule over N = 2 subintervals which
approximates I(f). Use the quadrature rule (1) in the composite method.

Solution:

6a

The n-point Gauss quadrature rule has order 2n−1, which is the largest
possible. We should therefore use the 3-point Gauss quadrature rule.

6b

Translating the interval [−1, 1] to [0, 10] gives quad. points and weights

x0 = 5− 5/
√

3, x1 = 5 + 5/
√

3, w0 = w1 = 5

and on the interval [10, 20]

x2 = 15− 5/
√

3, x3 = 15 + 5/
√

3, w2 = w3 = 5.

Thus, the composite quadrature rule is

I(f) ≈ 5
(
f(5− 5/

√
3) + f(5 + 5/

√
3) + f(15 + 5/

√
3) + f(15 + 5/

√
3)
)
.

Problem 7 Runge–Kutta method (10 points)

Consider the ODE {
x′(t) = f(x(t), t)

x(0) = x0

where f is a given smooth function, and the Runge–Kutta method

k = f(yn + hk/2, tn + h/2)

yn+1 = yn + hk.

(Continued on page 7.)
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Set f(x, t) = λx for some λ ∈ C with Re(λ) < 0. Find the stability function
of this method, and determine whether the method is unconditionally stable
or not.

Hint: If you are unable to determine stability, it’s enough to insert hλ =
1, 10, 100 in the stability function and conclude based on that.

Solution: We insert f(x, t) = λx and get

k = λ(yn + hk/2) ⇔ k =
hλ

1− hλ/2
yn

yn+1 = yn + hk = yn

(
1 + hλ

1−hλ/2

)
= ynR(hλ)

where R(z) = 1 + z
1−z/2 = 1+z/2

1−z/2 = 2+z
2−z . If Re(z) < 0 then

|2 + z| < |2 − z|, and therefore |R(z)| < 1 for all such z. We conclude
that the method is unconditionally stable.


