UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:	MAT3110/MAT4110 — Introduction to numerical analysis
Day of examination:	26 November 2020
Examination hours:	15:00-19:00
This problem set consists of 8 pages.	
Appendices:	None
Permitted aids:	All written aids

Please make sure that your copy of the problem set is complete before you attempt to answer anything. Note:

- There are in total 14 subproblems (1a, 1b, 2a, etc.), and you can get between 5 and 10 points for each sub-problem.
- All answers must be justified.

Problem 1 QR factorization

Let $\delta > 0$ and let

$$A = \begin{pmatrix} 3 & 3 & 0 \\ 0 & \delta & 1 \\ 4 & 4 & 0 \end{pmatrix}.$$

1a

Compute the QR factorization of A using the Gram–Schmidt algorithm.

1b

If δ is very small, what can go wrong if we run this algorithm on a computer? Be as specific as you can.

Solution:

1a

We run through the algorithm:

$$n = 1: \ w \leftarrow \begin{pmatrix} 3\\0\\4 \end{pmatrix}, \ r_1 \leftarrow \begin{pmatrix} 5\\0\\0 \end{pmatrix}, \ q_1 \leftarrow \begin{pmatrix} 3/5\\0\\4/5 \end{pmatrix}, \ k \leftarrow 1.$$

(Continued on page 2.)

$$n = 2: \ w \leftarrow \begin{pmatrix} 0\\\delta\\0 \end{pmatrix}, \ r_2 \leftarrow \begin{pmatrix} 5\\\delta\\0 \end{pmatrix}, \ q_2 \leftarrow \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \ k \leftarrow 2$$
$$n = 3: \ w \leftarrow \begin{pmatrix} 0\\0\\0 \end{pmatrix}, \ r_3 \leftarrow \begin{pmatrix} 0\\1\\0 \end{pmatrix}.$$

Since k < n at the end of the algorithm, we add a unit vector q_3 which is orthogonal to q_1, q_2 , for instance $q_3 = \begin{pmatrix} -4/5 \\ 0 \\ 3/5 \end{pmatrix}$. (Only $\pm q_3$ are correct answers.) We get

$$A = QR, \qquad Q = \begin{pmatrix} 3/5 & 0 & -4/5 \\ 0 & 1 & 0 \\ 4/5 & 0 & 3/5 \end{pmatrix}, \qquad R = \begin{pmatrix} 5 & 5 & 0 \\ 0 & \delta & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

1b

If $\delta \approx 0$ then we might run into roundoff errors when we compute w in the second step:

$$w = \begin{pmatrix} 3\\ \delta\\ 4 \end{pmatrix} - \begin{pmatrix} \frac{9}{5} + \frac{16}{5} \end{pmatrix} \begin{pmatrix} 3/5\\ 0\\ 4/5 \end{pmatrix} = \begin{pmatrix} \widetilde{0}\\ \delta\\ \widehat{0} \end{pmatrix}$$

where $0, 0 \approx 0$. If the round off error is of the same order as δ , then the relative error is large, and $q_2 = w/||w||$ will be incorrect; in particular, q_2 will not be orthogonal to q_1 . As a consequence, the computation of w in the third step will be incorrect, leading to incorrect r_3 and q_3 .

Problem 2

Let $A \in \mathbb{R}^{n \times n}$ be a given matrix and define

$$f(x) = \frac{\|Ax\|}{\|x\|} \quad \text{for } x \in \mathbb{R}^n, \ x \neq 0$$

(where $\|\cdot\|$ is the Euclidean norm, $\|x\| = \sqrt{\sum_{i=1}^{n} (x_i)^2}$.)

2a

In what way does f(x) tell us how sensitive A is to x?

2b

Assume that n = 2 and that A can be decomposed as

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 8 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3/5 & 4/5 \\ -4/5 & 3/5 \end{pmatrix}.$$

What type of decomposition is this?

```
(Continued on page 3.)
```

2c

Let A be as in problem **2b**. Find nonzero vectors $y, z \in \mathbb{R}^2$ such that

$$f(y) = \max_{\substack{x \in \mathbb{R}^2 \\ x \neq 0}} f(x), \qquad f(z) = \min_{\substack{x \in \mathbb{R}^2 \\ x \neq 0}} f(x).$$

Solution:

2a

Let $e \in \mathbb{R}^n$. Then f(x) is the relative error when we evaluate A(e+x) instead of Ae:

$$\frac{\|A(e+x) - Ae\|}{\|(e+x) - e\|} = \frac{\|Ax\|}{\|x\|} = f(x)$$

Put another way: It tells us how sensitive the map $e \mapsto Ae$ is to changes in the input.

2b

This is an SVD decomposition, $A = USV^{\mathsf{T}}$, with

$$U = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad S = \begin{pmatrix} 8 & 0 \\ 0 & 1 \end{pmatrix}, \quad V = \begin{pmatrix} 3/5 & -4/5 \\ 4/5 & 3/5 \end{pmatrix}.$$

Indeed, S is clearly a diagonal matrix with nonnegative entries, and both U and V are orthogonal matrices: $UU^{\mathsf{T}} = VV^{\mathsf{T}} = I$.

2c

Write $U = (u_1 \ u_2), V = (v_1 \ v_2), S = \text{diag}(\sigma_1, \sigma_2)$. Then $Ax = u_1\sigma_1\langle v_1, x \rangle + u_2\sigma_2\langle v_2, x \rangle$. Since u_1, u_2 are orthonormal, the norm of Ax is

$$||Ax|| = \sqrt{\sigma_1^2 \langle v_1, x \rangle^2 + \sigma_2^2 \langle v_2, x \rangle^2}.$$

If, say, ||y|| = 1 and f(y) is as large as possible, then necessarily we need $\langle v_1, y \rangle = 1$ and $\langle v_2, y \rangle = 0$ — that is, $y = v_1$. Likewise, we need $z = v_2$. Thus:

$$y = \begin{pmatrix} 3/5\\4/5 \end{pmatrix}, \quad z = \begin{pmatrix} -4/5\\3/5 \end{pmatrix}.$$

Problem 3 Newton's method

Consider the system of equations

$$x^{3} - y^{3} = 3$$

$$x^{2} + y^{2} = 4.$$
(1)

3a

Write down Newton's method for solving (1), and perform one iteration when starting at $(x_0, y_0) = (1, 1)$.

(Continued on page 4.)

3b

What can go wrong if we start at, or close to, the x- or y-axes?

Solution:

3a Let

$$f(x,y) = \begin{pmatrix} x^3 - y^3 - 3\\ x^2 + y^2 - 4 \end{pmatrix}.$$

Newton's method is

$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} x_n \\ y_n \end{pmatrix} - \nabla f(x_n, y_n)^{-1} f(x_n, y_n).$$

We compute

$$\nabla f(x,y) = \begin{pmatrix} 3x^2 & -3y^2 \\ 2x & 2y \end{pmatrix} \quad \Rightarrow \quad \nabla f(x,y)^{-1} = \frac{1}{6x^2y + 6xy^2} \begin{pmatrix} 2y & 3y^2 \\ -2x & 3x^2 \end{pmatrix}.$$

This gives

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \frac{1}{12} \begin{pmatrix} 2 & 3 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} -3 \\ -2 \end{pmatrix}$$
$$= \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \frac{1}{12} \begin{pmatrix} -12 \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

3b

The Jacobian $\nabla f(x, y)$ is not invertible when x = 0 or y = 0 (the first or second column becomes zero, respectively). As a consequence the Newton method breaks down.

This happens because near, say, the x-axis (i.e., when $y \approx 0$), the function f changes little or nothing at all when moving in the ydirection. As a consequence, Newton's method dictates moving very far (or infinitely far) in the y-direction.

Problem 4 Polynomial interpolation

Let $f : \mathbb{R} \to \mathbb{R}$ be a function satisfying

$$f(0) = 2, \quad f(1) = 1, \quad f(3) = 5.$$

4a

Find the polynomial p of the lowest possible order which interpolates f through these points.

4b

Assume that $f \in C^3([0,4])$ satisfies

$$||f^{(3)}||_{\infty} \leq M$$
, where $||f^{(3)}||_{\infty} = \sup_{x \in [0,4]} |f^{(3)}(x)|$

for some M > 0. Estimate the error $||f - p||_{\infty}$ in terms of M.

Hint: You don't need the solution from problem 4a in order to solve problem 4b.

Solution:

4a

We have 3 interpolation points, hence there exists a unique interpolating polynomial $p \in \mathbb{P}_n$ when n = 2. We use the Lagrange form for p:

$$p(x) = \sum_{i=0}^{2} f(x_i) L_i(x) = 2 \frac{x-1}{0-1} \frac{x-3}{0-3} + 1 \frac{x-0}{1-0} \frac{x-3}{1-3} + 5 \frac{x-0}{3-0} \frac{x-1}{3-1}$$
$$= \frac{2}{3} (x-1)(x-3) - \frac{1}{2} x(x-3) + \frac{5}{6} x(x-1)$$
$$= x^2 - 2x + 2.$$

4b

The standard error estimate is

$$|f(x) - p(x)| = \frac{|f^{(n+1)}(\xi)|}{(n+1)!} \prod_{i=0}^{n} |x - x_i| \leq \frac{M}{6} |x(x-1)(x-3)|$$

where n = 2, for some $\xi \in (0, 4)$. The last term can be estimated in various ways, for instance by upper bounding each of the terms x, x - 1 and x - 3 by 4, 3 and 3, resp. (since $x \in [0, 4]$). This gives:

$$\|f - p\|_{\infty} \leqslant 6M.$$

(The function $x \mapsto x(x-1)(x-3)$ attains its largest absolute value at x = 4, with the value 12; thus, the sharpest upper bound is 2M.)

Problem 5 Numerical quadrature

Consider the quadrature rule $I(f) \approx J(f)$, where

$$I(f) = \int_0^4 f(x) dx$$
 and $J(f) = f(0)w_0 + f(x_1)w_1 + f(4)w_2$

where $w_0, w_1, w_2 \in \mathbb{R}$ and $x_1 \in (0, 4)$.

5a

Let $x_1 \in (0,4)$ be fixed. Let *m* denote the largest integer such that the quadrature rule is exact for all $f \in \mathbb{P}_m$. Show that w_0, w_1, w_2 can be chosen such that $m \ge 2$.

(Continued on page 6.)

Page 6

Hint: You need to find expressions for w_0, w_1, w_2 , and to show that I(f) = J(f) for all $f \in \mathbb{P}_2$.

5b

Is there a choice of $x_1 \in (0, 4)$ which makes the order m of the quadrature rule greater than 2? Explain why, or why not.

Solution:

5a

Let $f \in \mathbb{P}_2$. Then $f = f(0)L_0 + f(x_1)L_1 + f(4)L_2$, where L_i is the *i*-th Lagrange function. Hence,

$$\int_{0}^{4} f(x) dx = f(0) \underbrace{\int_{0}^{4} L_{0}(x) dx}_{=w_{0}} + f(x_{1}) \underbrace{\int_{0}^{4} L_{1}(x) dx}_{=w_{1}} + f(4) \underbrace{\int_{0}^{4} L_{2}(x) dx}_{=w_{2}}$$
$$= w_{0}f(0) + w_{1}f(x_{1}) + w_{2}f(4).$$

From the definition it is clear that the method is exact for all $f \in \mathbb{P}_2$.

5b

Yes, the midpoint $x_1 = 2$ would yield Simpson's rule,

$$J(f) = \frac{4}{6}f(0) + \frac{16}{6}f(2) + \frac{4}{6}f(4).$$

We only need to check that J integrates $f(x) := x^3$ exactly:

$$I(f) = 64,$$

$$J(f) = \frac{16}{6}2^3 + \frac{4}{6}4^3 = \frac{16 \cdot 8 + 4 \cdot 4^3}{6} = 64.$$

An alternative solution is to recall the formula $f(x) - p(x) = \frac{f^{(3)}(\xi)}{6}(x-0)(x-x_1)(x-4)$, for some $\xi \in (0,4)$, where $p \in \mathbb{P}_2$ interpolates f through 0, x_1 , 4. If $f \in \mathbb{P}_3$ then $f^{(3)} \equiv c$ for some $c \in \mathbb{R}$, so

$$I(f) - J(f) = \int_0^4 f(x) - p(x) \, dx = \frac{c}{6} \int_0^4 (x - 0)(x - x_1)(x - 4) \, dx.$$

We see that the choice $x_1 = 2$ would make the integral vanish, and hence I(f) = J(f).

Problem 6 Numerical methods for ODEs

Consider the ordinary differential equation (ODE)

$$\begin{cases} \dot{x}(t) = f(x(t), t) & \text{for } t > 0\\ x(0) = x_0 \end{cases}$$
(2)

(Continued on page 7.)

We partition the time domain $t \in [0, T]$ into subintervals with endpoints $t_n = hn$, where $h = \frac{T}{N}$, for some $N \in \mathbb{N}$. The solution is approximated as $y_n \approx x(t_n)$.

6a

Consider the Runge–Kutta method with the Butcher tableau

$$\begin{array}{c|cc} \alpha & 0 & 0 \\ \hline 2/3 & 1/3 & \beta \\ \hline & 1/4 & \gamma \end{array}$$

for numbers $\alpha, \beta, \gamma \in \mathbb{R}$. Determine α, β, γ such that the method is consistent. Is the method explicit or implicit?

6b

For the Runge–Kutta method from problem **6a**, write down a formula for y_{n+1} in terms of y_n .

6c

We consider the linear problem (2) with $f(x,t) = \lambda x$ for some $\lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda < 0$. We solve the problem using the numerical method

$$\begin{cases} y_{n+1} = y_n + hf\left(y_n + \frac{h}{2}f(y_n, t_n), t_n + \frac{h}{2}\right) & \text{for } n = 0, 1, \dots, \\ y_0 = x_0. \end{cases}$$
(3)

Find the stability function for (3). Is the method unconditionally stable?

Solution:

6a

We need $\alpha = 0 + 0 = 0$, $2/3 = 1/3 + \beta$, and $1/4 + \gamma = 1$, so

 $\alpha = 0, \ \beta = 1/3, \ \gamma = 3/4.$

The method is implicit since the Runge–Kutta matrix has nonzero entries along the diagonal.

6b

We get

$$k_1 = f(y_n, t_n)$$

$$k_2 = f(y_n + h(k_1 + k_2)/3, t_n + 2/3)$$

$$y_{n+1} = y_n + h(k_1 + 3k_2)/4.$$

6c

If we insert $f(x, \lambda) = \lambda x$ then we get

$$y_{n+1} = y_n + h\lambda \left(y_n + \frac{h}{2}\lambda y_n\right) = y_n \left(1 + h\lambda + \frac{1}{2}(h\lambda)^2\right).$$

Hence, $y_{n+1} = R(h\lambda)y_n$ with

$$R(z) = 1 + z + \frac{z^2}{2}.$$

If, say, $\lambda \in \mathbb{R}$ and $\lambda \ll 0$ then $|R(\lambda h)|$ is a large number (larger than 1) unless h is proportionally small. In other words, the method is *not* unconditionally stable.