UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in: MAT3110/MAT4110 — Introduction to
numerical analysis

Day of examination: 26 November 2020
Examination hours:  15:00-19:00

This problem set consists of 8 pages.
Appendices: None

Permitted aids: All written aids

Please make sure that your copy of the problem set is

Not complete before you attempt to answer anything.
ote:

e There are in total 14 subproblems (1a, 1b, 2a, etc.), and you can get
between 5 and 10 points for each sub-problem.

e All answers must be justified.

Problem 1 QR factorization

3 30
A=10 o0 1].
4 4 0

Compute the QR factorization of A using the Gram—Schmidt algorithm.

Let 6 > 0 and let

la

1b

If § is very small, what can go wrong if we run this algorithm on a computer?
Be as specific as you can.

Solution:

la
We run through the algorithm:

3 5 3/5
n=1 w+ |0, 1< [0),qa< | O |, k<« 1.
4 0 4/5

(Continued on page 2.)
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0 5 0
n=2:w<+ [0, o« 0], 2 1], k<2
0 0 0
0 0
n=3 w+< |0],r3+ |1
0 0
Since k < n at the end of the algorithm, we add a unit vector g3 which is
—4/5
orthogonal to q1, g2, for instance g3 = 0 . (Only 4¢3 are correct
3/5
answers.) We get
3/5 0 —4/5 5 5 0
A=QR, Q=10 1 0 , R=10 6 1
4/5 0 3/5 000

1b

If 6 =~ 0 then we might run into roundoff errors when we compute w in
the second step:

3 3/5 0
w=[s]-@+2) (0 |=s
4 4/5 0

where 0,0 ~ 0. If the round off error is of the same order as &, then the
relative error is large, and g2 = w/||w|| will be incorrect; in particular,
g2 will not be orthogonal to ¢;. As a consequence, the computation of
w in the third step will be incorrect, leading to incorrect r3 and gs.

Problem 2
Let A € R™" be a given matrix and define
A
f(x) HH T|H forz e R", x#0
x
(where || - || is the Euclidean norm, ||z = /> i, (z:)2.)

2a

In what way does f(x) tell us how sensitive A is to z?

2b

Assume that n = 2 and that A can be decomposed as

A 0 -1\ /8 0 3/5 4/5
S\l 0 /N0 1) \—%5 3/5)"
What type of decomposition is this?

(Continued on page 3.)
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2c

Let A be as in problem 2b. Find nonzero vectors y, z € R? such that

fly) = max f(z),  f(z) = min f(z).
zeR zeR
x#0 x#0

Solution:

2a

Let e € R"™. Then f(z) is the relative error when we evaluate A(e + x)
instead of Ae:
Ale+z) — Ae Az
|Ae +) = Ael _ JAs] _
I(e +z) — €] &gl

Put another way: It tells us how sensitive the map e — Ae is to changes
in the input.

2b

This is an SVD decomposition, A = USV T, with

(0 -1 (8 0 (35 =45
70 %) s=6) =0 W)
Indeed, S is clearly a diagonal matrix with nonnegative entries, and
both U and V are orthogonal matrices: UUT = VVT = 1.

2c

Write U = (uy ue), V. = (v1 vg), S = diag(o1,02). Then Ax =
u1o1(vy, ) + ugoa(ve, ). Since uj,us are orthonormal, the norm of
Az is

| Az|| = \/a%<v1,x>2 + 02 {vq, T)2.

If, say, |ly|| = 1 and f(y) is as large as possible, then necessarily we need
(v1,y) =1 and (vg,y) = 0 — that is, y = vy. Likewise, we need z = vs.

Thus:
() ()

Problem 3 Newton’s method

Consider the system of equations
d -yt =3
2?4+ =4
3a
Write down Newton’s method for solving (1), and perform one iteration

when starting at (xg,y0) = (1, 1).

(Continued on page 4.)
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3b

What can go wrong if we start at, or close to, the z- or y-axes?

Solution:

3a
Let
flz,y) = ( 2 2_y

Newton’s method is

<wn+1> _ <xn> — V@0, Yn) " @y Y-

Yn+1 Un

We compute

_ 3z2 —3y? -1 1 2y 3y?
Vf(l’ay)—<2x Qy) =  Vf(z,y) = 622 + 6252 \ 2z 322
This gives

w\ (1 _1(2 3)\(-3
p) \1) 12\-2 3) (-2
1\ 1 (12
A\ 12 0
(2
=(1)-
3b

The Jacobian V f(z,y) is not invertible when z = 0 or y = 0 (the first
or second column becomes zero, respectively). As a consequence the
Newton method breaks down.

This happens because near, say, the z-axis (i.e., when y =~ 0),
the function f changes little or nothing at all when moving in the y-
direction. As a consequence, Newton’s method dictates moving very far
(or infinitely far) in the y-direction.

Problem 4 Polynomial interpolation

Let f : R — R be a function satisfying

4a

Find the polynomial p of the lowest possible order which interpolates f
through these points.

(Continued on page 5.)
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4b
Assume that f € C3(]0,4]) satisfies

||f HOO <M, where Hf(g)HOO = sup !f }
z€[0,4]

for some M > 0. Estimate the error || f — p|/c in terms of M.

Hint:  You don’t need the solution from problem 4a in order to solve
problem 4b.

Solution:

4a

We have 3 interpolation points, hence there exists a unique interpolating
polynomial p € P,, when n = 2. We use the Lagrange form for p:

r—1x—3 r—0x—3 r—0x—1

2
= L =2 1
p(@) =D f@)Li(®) = 25753 T 17=g1=3 * 53031

=0

2 1 )
= g(x— 1)(z—3)— 5:13(1’—3) + 61’(1’— 1)
=22 -2z +2

4b

The standard error estimate is

|f n+1

(@) — p(a)| = 'H|z—:m| < Yla(@ -1 - 3)

n—l—l

where n = 2, for some £ € (0,4). The last term can be estimated in
various ways, for instance by upper bounding each of the terms z, x — 1
and z — 3 by 4, 3 and 3, resp. (since = € [0,4]). This gives:

Hf _pHoo < 6M

(The function x — z(z — 1)(z — 3) attains its largest absolute value at
x = 4, with the value 12; thus, the sharpest upper bound is 2M.)

Problem 5 Numerical quadrature
Consider the quadrature rule I(f) ~ J(f), where

= [ wrae md a0 = FOw+ e + i
where wo, wy, wy € R and z; € (0,4).

5a

Let 1 € (0,4) be fixed. Let m denote the largest integer such that the
quadrature rule is exact for all f € P,,. Show that wg, w;,ws can be chosen
such that m > 2.

(Continued on page 6.)
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Hint: You need to find expressions for wgy,wy,ws, and to show that I(f) =
J(f) for all f € Py.

5b

Is there a choice of 1 € (0,4) which makes the order m of the quadrature
rule greater than 27 Explain why, or why not.

Solution:

ba

Let f € Py. Then f = f(0)Lo + f(x1)L1 + f(4)La, where L; is the i-th
Lagrange function. Hence,

4 4 4 4
/0 f(z)dz = £(0) / Lo(z) de + (1) /0 Ly(z) do +(4) /0 Lo(z) de

=wo =w1 =w2y

= wof(0) + w1 f(x1) + waf(4).

From the definition it is clear that the method is exact for all f € P5.

5b

Yes, the midpoint 1 = 2 would yield Simpson’s rule,

4 16 4
J(f) = = f(0) + —f(2) + = f(4).
6 6 6
We only need to check that .J integrates f(z) := 23 exactly:

I(f) = 64,

16 4 16 -8 44 - 43
J(f) ==+ 4P=—— =

64.
6 6 6

An alternative solution is to recall the formula f(x) — p(x) =

%(m—())(x—xl)(a:—él), for some & € (0,4), where p € Py interpolates

f through 0, z1, 4. If f € P5 then f®) = ¢ for some ¢ € R, so

4 c 4
1(f) - J(f) = / £(a) ~ pla) dw = ¢ / (x — 0)(z — 21)(z — 4) do.

We see that the choice 1 = 2 would make the integral vanish, and

hence I(f) = J(f).

Problem 6 Numerical methods for ODEs

Consider the ordinary differential equation (ODE)

{a’:(t) = f(x(t),t) fort>0
z(0) = xo

(Continued on page 7.)
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We partition the time domain ¢ € [0,7] into subintervals with endpoints

t, = hn, where h = %, for some N € N. The solution is approximated as
Yn & z(tn).
6a

Consider the Runge-Kutta method with the Butcher tableau

for numbers «, 3,7 € R. Determine «,3,v such that the method is
consistent. Is the method explicit or implicit?

6b

For the Runge-Kutta method from problem 6a, write down a formula for
Yn+1 in terms of y,.

6¢c

We consider the linear problem (2) with f(z,t) = Az for some A € C with
Re A < 0. We solve the problem using the numerical method

{ynH :yn+hf(yn+%f(yn,tn), tn+%) forn=0,1,..., 3)

Yo = Zo-

Find the stability function for (3). Is the method unconditionally stable?

Solution:

6a

Weneed a=0+0=0,2/3=1/3+3,and 1/4+~v =1, so
a=0, f=1/3, v=3/4.

The method is implicit since the Runge-Kutta matrix has nonzero
entries along the diagonal.

6b
We get
k1= f(ynv tn)

ko = f(yn + h(k1 + k2)/3,tn + 2/3)
Yn+1 = Yn + h(k‘l e 3]{72)/4.

(Continued on page 8.)
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6¢c
If we insert f(z,\) = Az then we get
Unt1 = Yn + hA(Yn + 2Ayn) = yn (1 + hA + S(hA)?).
Hence, y,+1 = R(h\)y, with
R(z)=1+2+%.

If, say, A € R and A < 0 then |R(\h)| is a large number (larger than
1) unless h is proportionally small. In other words, the method is not
unconditionally stable.




