UNIVERSITY OF OSLO
 Faculty of mathematics and natural sciences

Exam in: \quad MAT3110/MAT4110 - Introduction to numerical analysis
Day of examination: 15 December 2020
Examination hours: 09:00-13:00
This problem set consists of 3 pages.
Appendices: None
Permitted aids: All written aids

Please make sure that your copy of the problem set is
Note: complete before you attempt to answer anything.

- There are in total 12 subproblems ($1 \mathrm{a}, 1 \mathrm{~b}$, and so on), and you can get 10 points for each sub-problem.
- All answers must be justified.

Problem 1 Condition number

Let $A=\left(\begin{array}{ll}1 & 2 \\ 0 & \varepsilon\end{array}\right)$ for some (small) number $\varepsilon>0$.

1a

Show that the condition number $\kappa_{\infty}(A)$ with respect to the supremum norm $\|\cdot\|_{\infty}$ is $3+\frac{6}{\varepsilon}$.

1b
Let $\varepsilon=10^{-4}$. If we want to solve the equation $A x=c$, and we make a relative error $\frac{\|\delta c\|_{\infty}}{\|c\|_{\infty}}=0.001$ in c, then how large might the relative error (measured in the ∞-norm) in the solution x be?

Problem 2 Solving nonlinear equations

Let $f(x)=\binom{\left(1-a^{2} b\right) / 4}{\left(a^{2}+b^{2}+1\right) / 8}$ for $x=(a, b) \in D=[0,1]^{2}$. We wish to solve the fixed point equation

$$
\begin{equation*}
f(x)=x . \tag{1}
\end{equation*}
$$

We consider a fixed point iteration starting at $x^{(0)}=\binom{0}{1}$.

2a

Compute the first iteration $x^{(1)}$ of the fixed point iteration for this problem.

2b

Show that f is a contraction in the norm $\|\cdot\|_{\infty}$ with contraction constant $L=3 / 4$. Prove that the fixed point iteration converges to a solution of (1).

2c
Approximately how many fixed point iterations are needed when starting at $x^{(0)}$, in order to guarantee that the error $\left\|x^{(k)}-x\right\|_{\infty}$ is less than 10^{-3} ?

Problem 3 Interpolation

Let $f(x)=\frac{1}{1+x}$ for $x \in[0,1]$.

3a

Let $p_{n} \in \mathcal{P}_{n}$ be the interpolant of f over the uniform mesh $x_{k}=\frac{k}{n}$, $k=0,1, \ldots, n$. Estimate the error $\left\|f-p_{n}\right\|_{\infty}$. Is it possible to find an $n \in \mathbb{N}$ so that the error is less than 10^{-4} ?
Hint: The j-th derivative of f is $f^{(j)}(x)=\frac{(-1)^{j} j \text { ! }}{(1+x)^{j+1}}$.

3b

For a fixed $n \in \mathbb{N}$, how should we select the interpolation points $x_{0}, \ldots, x_{n} \in$ $[0,1]$ in order to make the error $\left\|f-p_{n}\right\|_{\infty}$ as small as possible? Estimate the error for these interpolation points.

Problem 4 Approximation in the 2-norm

Define the weight function $w:[0,1] \rightarrow \mathbb{R}$ by $w(x)=x$. Find the polynomial $p \in \mathcal{P}_{1}$ which is closest to $f(x)=e^{x}$ in the weighted 2-norm

$$
\|f-p\|_{L_{w}^{2}}=\sqrt{\int_{0}^{1} w(x)|f(x)-p(x)|^{2} d x}
$$

Hint: The first orthogonal polynomials with respect to w are

$$
\varphi_{0}(x)=1, \quad \varphi_{1}(x)=x-\frac{2}{3}
$$

(you don't need to show this).

Problem 5 Order of a quadrature rule

We want to approximate the integral $I(f)=\int_{-1}^{1} f(x) d x$. Let $x_{0}=-\frac{2}{3}$. Find $x_{1} \in[-1,1]$ so that the resulting quadrature method

$$
I(f) \approx I_{1}(f)=w_{0} f\left(x_{0}\right)+w_{1} f\left(x_{1}\right)
$$

has order at least 3 . Is it possible to find x_{1} so that the order is $4 ?$

Problem 6 Composite quadrature

We wish to approximate the d-dimensional integral

$$
I(f):=\int_{[0,1]^{d}} f(x) d x
$$

for $f:[0,1]^{d} \rightarrow \mathbb{R}$. Consider the midpoint method

$$
I(f) \approx I_{0}(f):=f(1 / 2,1 / 2, \ldots, 1 / 2) .
$$

6a

Prove that the approximation error can be bounded by

$$
\left|I(f)-I_{0}(f)\right| \leqslant \frac{1}{8}\left\|\nabla^{2} f\right\|_{\infty}
$$

where $\nabla^{2} f$ is the Hessian of f and the supremum is taken with respect to the matrix norm: $\left\|\nabla^{2} f\right\|_{\infty}=\sup _{x \in[0,1]^{d}}\left\|\nabla^{2} f(x)\right\|_{\mathcal{L}}$.
Hint: You might need the multi-dimensional Taylor expansion,

$$
f(x)=f(a)+\nabla f(a) \cdot(x-a)+R(x)
$$

where the remainder term can be bounded as $|R(x)| \leqslant \frac{1}{2}\left\|\nabla^{2} f\right\|_{\infty}\|x-a\|_{\infty}^{2}$.

6b

Write down the composite midpoint method $I_{0, m}$ for the above integral, and show that the error is at most

$$
\left|I(f)-I_{0, m}(f)\right| \leqslant \frac{\left\|\nabla^{2} f\right\|_{\infty}}{8 m^{2}} .
$$

6c

If $d=20$ and $\left\|\nabla^{2} f\right\|_{\infty} \approx 1$, roughly how many function evaluations of f are needed in order to bring the error below $\varepsilon=10^{-4}$? Is this feasible (realistic) on a modern laptop?

