UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:	MAT3110/MAT4110 — Introduction to numerical analysis
Day of examination:	15 December 2020
Examination hours:	09:00-13:00
This problem set consists of 3 pages.	
Appendices:	None
Permitted aids:	All written aids

Please make sure that your copy of the problem set is complete before you attempt to answer anything. Note:

- There are in total 12 subproblems (1a, 1b, and so on), and you can get 10 points for each sub-problem.
- All answers must be justified.

Problem 1 Condition number

Let $A = \begin{pmatrix} 1 & 2 \\ 0 & \varepsilon \end{pmatrix}$ for some (small) number $\varepsilon > 0$.

1a

Show that the condition number $\kappa_{\infty}(A)$ with respect to the supremum norm $\|\cdot\|_{\infty}$ is $3 + \frac{6}{\epsilon}$.

1b

Let $\varepsilon = 10^{-4}$. If we want to solve the equation Ax = c, and we make a relative error $\frac{\|\delta c\|_{\infty}}{\|c\|_{\infty}} = 0.001$ in c, then how large might the relative error (measured in the ∞ -norm) in the solution x be?

Problem 2 Solving nonlinear equations

Let $f(x) = \begin{pmatrix} (1-a^2b)/4 \\ (a^2+b^2+1)/8 \end{pmatrix}$ for $x = (a,b) \in D = [0,1]^2$. We wish to solve the fixed point equation

$$f(x) = x. (1)$$

We consider a fixed point iteration starting at $x^{(0)} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

2a

Compute the first iteration $x^{(1)}$ of the fixed point iteration for this problem.

(Continued on page 2.)

2b

Show that f is a contraction in the norm $\|\cdot\|_{\infty}$ with contraction constant L = 3/4. Prove that the fixed point iteration converges to a solution of (1).

2c

Approximately how many fixed point iterations are needed when starting at $x^{(0)}$, in order to guarantee that the error $||x^{(k)} - x||_{\infty}$ is less than 10^{-3} ?

Problem 3 Interpolation

Let $f(x) = \frac{1}{1+x}$ for $x \in [0, 1]$.

3a

Let $p_n \in \mathcal{P}_n$ be the interpolant of f over the uniform mesh $x_k = \frac{k}{n}$, $k = 0, 1, \ldots, n$. Estimate the error $||f - p_n||_{\infty}$. Is it possible to find an $n \in \mathbb{N}$ so that the error is less than 10^{-4} ?

Hint: The *j*-th derivative of *f* is $f^{(j)}(x) = \frac{(-1)^j j!}{(1+x)^{j+1}}$.

3b

For a fixed $n \in \mathbb{N}$, how should we select the interpolation points $x_0, \ldots, x_n \in [0, 1]$ in order to make the error $||f - p_n||_{\infty}$ as small as possible? Estimate the error for these interpolation points.

Problem 4 Approximation in the 2-norm

Define the weight function $w: [0,1] \to \mathbb{R}$ by w(x) = x. Find the polynomial $p \in \mathcal{P}_1$ which is closest to $f(x) = e^x$ in the weighted 2-norm

$$||f - p||_{L^2_w} = \sqrt{\int_0^1 w(x) |f(x) - p(x)|^2 dx}.$$

Hint: The first orthogonal polynomials with respect to w are

$$\varphi_0(x) = 1, \qquad \varphi_1(x) = x - \frac{2}{3}$$

(you don't need to show this).

Problem 5 Order of a quadrature rule

We want to approximate the integral $I(f) = \int_{-1}^{1} f(x) dx$. Let $x_0 = -\frac{2}{3}$. Find $x_1 \in [-1, 1]$ so that the resulting quadrature method

$$I(f) \approx I_1(f) = w_0 f(x_0) + w_1 f(x_1)$$

has order at least 3. Is it possible to find x_1 so that the order is 4?

(Continued on page 3.)

Problem 6 Composite quadrature

We wish to approximate the d-dimensional integral

$$I(f) \coloneqq \int_{[0,1]^d} f(x) \, dx$$

for $f : [0,1]^d \to \mathbb{R}$. Consider the midpoint method

$$I(f) \approx I_0(f) \coloneqq f(1/2, 1/2, \dots, 1/2).$$

6a

Prove that the approximation error can be bounded by

$$|I(f) - I_0(f)| \leq \frac{1}{8} \left\| \nabla^2 f \right\|_{\infty}$$

where $\nabla^2 f$ is the Hessian of f and the supremum is taken with respect to the matrix norm: $\|\nabla^2 f\|_{\infty} = \sup_{x \in [0,1]^d} \|\nabla^2 f(x)\|_{\mathcal{L}}$.

Hint: You might need the multi-dimensional Taylor expansion,

$$f(x) = f(a) + \nabla f(a) \cdot (x - a) + R(x)$$

where the remainder term can be bounded as $|R(x)| \leq \frac{1}{2} \left\| \nabla^2 f \right\|_{\infty} \|x - a\|_{\infty}^2$.

6b

Write down the composite midpoint method $I_{0,m}$ for the above integral, and show that the error is at most

$$|I(f) - I_{0,m}(f)| \leq \frac{\|\nabla^2 f\|_{\infty}}{8m^2}.$$

6c

If d = 20 and $\|\nabla^2 f\|_{\infty} \approx 1$, roughly how many function evaluations of f are needed in order to bring the error below $\varepsilon = 10^{-4}$? Is this feasible (realistic) on a modern laptop?