
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Exam in: MAT3110/MAT4110 –– Introduction to
numerical analysis

Day of examination: 15 December 2020

Examination hours: 09:00 – 13:00

This problem set consists of 6 pages.

Appendices: None

Permitted aids: All written aids

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Note:

• There are in total 12 subproblems (1a, 1b, and so on), and you can
get 10 points for each sub-problem.

• All answers must be justified.

Problem 1 Condition number

Let A =

(
1 2
0 ε

)
for some (small) number ε > 0.

1a

Show that the condition number κ∞(A) with respect to the supremum norm
∥ · ∥∞ is 3 + 6

ε .

1b

Let ε = 10−4. If we want to solve the equation Ax = c, and we make a
relative error ∥δc∥∞

∥c∥∞ = 0.001 in c, then how large might the relative error

(measured in the ∞-norm) in the solution x be?

Solution:

1a

The matrix norm of A is the largest (absolute) row-sum of A. Hence,

∥A∥L = 1 + 2 = 3, ∥A−1∥L =

∥∥∥∥(1 −2/ε
0 1/ε

)∥∥∥∥
L
= 1 +

2

ε
.

Hence, κ∞(A) = ∥A∥L∥A−1∥L = 3 + 6
ε .

(Continued on page 2.)
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1b

The relative error in x might be as large as

∥δx∥∞
∥x∥∞

⩽ κ∞(A)
∥δc∥∞
∥c∥∞

=
(
3 + 6

ε

)
10−3 ≈ 60.

Problem 2 Solving nonlinear equations

Let f(x) =

(
(1− a2b)/4

(a2 + b2 + 1)/8

)
for x = (a, b) ∈ D = [0, 1]2. We wish to solve

the fixed point equation
f(x) = x. (1)

We consider a fixed point iteration starting at x(0) =

(
0
1

)
.

2a

Compute the first iteration x(1) of the fixed point iteration for this problem.

2b

Show that f is a contraction in the norm ∥ · ∥∞ with contraction constant
L = 3/4. Prove that the fixed point iteration converges to a solution of (1).

2c

Approximately how many fixed point iterations are needed when starting at
x(0), in order to guarantee that the error ∥x(k) − x∥∞ is less than 10−3?

Solution:

2a

We get x(1) = f(x(0)) =

(
1/4
1/4

)
.

2b

The Jacobian of f is

Jf (x) =

(
−ab/2 −a2/4
a/4 b/4

)
.

The matrix norm of the Jacobian is

∥Jf (x)∥L = max(ab/2 + a2/4, a/4 + b/4) ⩽ 3/4.

Since D is convex, it follows that f is a contraction with contraction
constant L = 3/4.

We also note that f maps D into D: The first component always
lies in [1/4, 1/2], and the second component always lies in [1/8, 3/8]. By

(Continued on page 3.)
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Banach’s fixed point theorem, the fixed point iteration converges to a
solution of (1).

2c

We have the basic estimate

∥x(k) − x∥ ⩽ ∥x(1) − x(0)∥ Lk

1− L
=

3

4

(3/4)k

1/4
= 3(3/4)k.

Thus, the error is less than 10−3 if

k >
log(1/3 · 10−3)

log(3/4)
≈ 27.8.

Hence, we need k ⩾ 28.

Problem 3 Interpolation

Let f(x) = 1
1+x for x ∈ [0, 1].

3a

Let pn ∈ Pn be the interpolant of f over the uniform mesh xk = k
n ,

k = 0, 1, . . . , n. Estimate the error ∥f − pn∥∞. Is it possible to find an
n ∈ N so that the error is less than 10−4?

Hint: The j-th derivative of f is f (j)(x) = (−1)jj!
(1+x)j+1 .

3b

For a fixed n ∈ N, how should we select the interpolation points x0, . . . , xn ∈
[0, 1] in order to make the error ∥f − pn∥∞ as small as possible? Estimate
the error for these interpolation points.

Solution:

3a

We have ∥f − pn∥∞ ⩽ ∥f (n+1)∥
(n+1)! ∥πn+1∥∞ = ∥πn+1∥∞ = supx∈[0,1] |x −

0||x− 1/n| · · · |x− 1| ⩽ 1/n → 0 as n → ∞. Hence, the answer is “yes”.

3b

The polynomial minimizing ∥f − p∥∞ is the minimax polynomial, but
we have no general approach to finding this polynomial.

Chebyshev interpolation points would yield the smallest value of
∥πn+1∥∞ for a general function f . If Tn+1 is the Chebyshev polynomial
on [−1, 1] then Cn+1(x) = Tn+1(2x − 1) is the Chebyshev polynomial
on [0, 1], and 2−n−12−nCn+1 = 2−2n−1Cn+1 is a monic polynomial with

(Continued on page 4.)
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zeros x0, . . . , xn, and hence equals πn+1. We get

∥f − pn∥∞ ⩽ ∥πn+1∥∞ = 2−2n−1∥Cn+1∥∞ = 2−2n−1.

Problem 4 Approximation in the 2-norm

Define the weight function w : [0, 1] → R by w(x) = x. Find the polynomial
p ∈ P1 which is closest to f(x) = ex in the weighted 2-norm

∥f − p∥L2
w
=

√∫ 1

0
w(x)|f(x)− p(x)|2 dx.

Hint: The first orthogonal polynomials with respect to w are

φ0(x) = 1, φ1(x) = x− 2

3

(you don’t need to show this).

Solution: We have the projection formula

p =

1∑
i=0

⟨φi, f⟩
⟨φi, φi⟩

φi.

We compute

⟨φ0, f⟩ =
∫ 1

0
xex = 1, ⟨φ0, φ0⟩ =

1

2
,

⟨φ1, f⟩ =
∫ 1

0
x(x− 2

3)e
x = e− 8

3
⟨φ1, φ1⟩ =

1

36
.

Hence,
p(x) = 2 + 36

(
e− 8

3

)(
x− 2

3

)
.

Problem 5 Order of a quadrature rule

We want to approximate the integral I(f) =
∫ 1
−1 f(x) dx. Let x0 = −2

3 . Find
x1 ∈ [−1, 1] so that the resulting quadrature method

I(f) ≈ I1(f) = w0f(x0) + w1f(x1)

has order at least 3. Is it possible to find x1 so that the order is 4?

Solution: The Lagrange functions are L0(x) = x−x0
x1−x0

and L1(x) =
x1−x
x1−x0

, so the weights are w0 =
−2x0
x1−x0

and w1 =
2x1

x1−x0
.

A quadrature method over two quadrature points has order at least
2 and at most 4, so we only need to check that the order is at least 3,
that is, that the polynomial p2(x) = x2 is integrated exactly. On the
one hand, I(p2) =

2
3 . On the other hand,

I1(p2) = w0x
2
0 + w1x

2
1 =

−2x1x
2
0

x1 − x0
+

2x0x
2
1

x1 − x0
= −2x0x1.

(Continued on page 5.)
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We want this to be equal to I(p2) =
2
3 , so we need

x1 = − 1

2x0

2

3
=

1

2
.

The only quadrature rule of order 4 is the Gauss method, and since
the quadrature point −2

3 is not one of the Gauss quadrature points, we
cannot achieve 4th order.

Problem 6 Composite quadrature

We wish to approximate the d-dimensional integral

I(f) :=

∫
[0,1]d

f(x) dx

for f : [0, 1]d → R. Consider the midpoint method

I(f) ≈ I0(f) := f(1/2, 1/2, . . . , 1/2).

6a

Prove that the approximation error can be bounded by

|I(f)− I0(f)| ⩽
1

8

∥∥∇2f
∥∥
∞

where ∇2f is the Hessian of f and the supremum is taken with respect to
the matrix norm: ∥∇2f∥∞ = supx∈[0,1]d ∥∇2f(x)∥L.
Hint: You might need the multi-dimensional Taylor expansion,

f(x) = f(a) +∇f(a) · (x− a) +R(x)

where the remainder term can be bounded as |R(x)| ⩽ 1
2

∥∥∇2f
∥∥
∞∥x− a∥2∞.

6b

Write down the composite midpoint method I0,m for the above integral, and
show that the error is at most

|I(f)− I0,m(f)| ⩽ ∥∇2f∥∞
8m2

.

6c

If d = 20 and ∥∇2f∥∞ ≈ 1, roughly how many function evaluations of f are
needed in order to bring the error below ε = 10−4? Is this feasible (realistic)
on a modern laptop?

Solution:

6a

Set a = (1/2, . . . , 1/2) in the first-order Taylor expansion of f . Then

I(f) =

∫
[0,1]d

f(a) +∇f(a) · (x− a) +R(x) dx

(Continued on page 6.)
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(set R =
∫
[0,1]d R(x) dx)

= f(a) +∇f(a) ·
∫
[0,1]d

x− a dx+R

= I0(f) +R

where we used the fact that I0(f) = f(a) and that
∫
x− a dx = 0. We

can estimate R by

|R| ⩽
∫
[0,1]d

1

2
∥∇2f∥∞∥x− a∥2∞ dx ⩽

1

8
∥∇2f∥∞

since ∥x− a∥∞ ⩽ 1/2 for all x in the unit hypercube.

6b

The composite midpoint method is

I0,m(f) =
1

md

m∑
i1=1

· · ·
m∑

id=1

f
(
i1−1/2

m , . . . , id−
1/2

m

)
.

In each hypercube Ci =
[
i1−1
m , i1m , . . . , id−1

m , idm
]
, the error committed can

be bounded by∣∣∣∣∫
Ci
f(x) dx− 1

md f
(
i1−1/2

m , . . . , id−
1/2

m

)∣∣∣∣ =
∣∣∣∣∣
∫
[0,1]d

f̃(y) dy − f̃(1/2, . . . , 1/2)

∣∣∣∣∣
⩽

1

8
∥∇2f̃∥∞

where f̃(y) = 1
md f

(
i1−y
m , . . . , id−y

m

)
. We have ∥∇2f̃∥∞ ⩽ 1

md+2 ∥∇2f∥∞,

so summing up all the errors gives

|I0,m − I(f)| ⩽
m∑

i1=1

· · ·
m∑

id=1

1

8

1

md+2
∥∇2f∥∞ =

1

8m2
∥∇2f∥∞.

6c

If 1
8m2 ∥∇2f∥∞ < ε, i.e. m >

√
∥∇2f∥∞

8ε ≈
√

1
8ε , then the error is no

bigger than ε. Since the quadrature method uses mtot = md function
evaluations, this corresponds to

mtot >
1

8d/2εd/2
= 8−101040 ≈ 1031.

The number of calculations needed is prohibitively large. (For
comparison, today’s fastest supercomputers can perform about 1018

floating point operations per second.)


