UNIVERSITY OF OSLO
 Faculty of mathematics and natural sciences

Exam in:

> MAT3110/MAT4110 - Introduction to numerical analysis

Day of examination: 15 December 2020
Examination hours: 09:00-13:00
This problem set consists of 6 pages.

Appendices:
Permitted aids:

None
All written aids

Please make sure that your copy of the problem set is
Note:

- There are in total 12 subproblems ($1 \mathrm{a}, 1 \mathrm{~b}$, and so on), and you can get 10 points for each sub-problem.
- All answers must be justified.

Problem 1 Condition number

Let $A=\left(\begin{array}{ll}1 & 2 \\ 0 & \varepsilon\end{array}\right)$ for some (small) number $\varepsilon>0$.
$1 \mathbf{a}$
Show that the condition number $\kappa_{\infty}(A)$ with respect to the supremum norm $\|\cdot\|_{\infty}$ is $3+\frac{6}{\varepsilon}$.

1b
Let $\varepsilon=10^{-4}$. If we want to solve the equation $A x=c$, and we make a relative error $\frac{\|\delta c\|_{\infty}}{\|c\|_{\infty}}=0.001$ in c, then how large might the relative error (measured in the ∞-norm) in the solution x be?

Solution:

1a
The matrix norm of A is the largest (absolute) row-sum of A. Hence,

$$
\|A\|_{\mathcal{L}}=1+2=3, \quad\left\|A^{-1}\right\|_{\mathcal{L}}=\left\|\left(\begin{array}{cc}
1 & -2 / \varepsilon \\
0 & 1 / \varepsilon
\end{array}\right)\right\|_{\mathcal{L}}=1+\frac{2}{\varepsilon}
$$

Hence, $\kappa_{\infty}(A)=\|A\|_{\mathcal{L}}\left\|A^{-1}\right\|_{\mathcal{L}}=3+\frac{6}{\varepsilon}$.

1b

The relative error in x might be as large as

$$
\frac{\|\delta x\|_{\infty}}{\|x\|_{\infty}} \leqslant \kappa_{\infty}(A) \frac{\|\delta c\|_{\infty}}{\|c\|_{\infty}}=\left(3+\frac{6}{\varepsilon}\right) 10^{-3} \approx 60 .
$$

Problem 2 Solving nonlinear equations

Let $f(x)=\binom{\left(1-a^{2} b\right) / 4}{\left(a^{2}+b^{2}+1\right) / 8}$ for $x=(a, b) \in D=[0,1]^{2}$. We wish to solve the fixed point equation

$$
\begin{equation*}
f(x)=x . \tag{1}
\end{equation*}
$$

We consider a fixed point iteration starting at $x^{(0)}=\binom{0}{1}$.

2a

Compute the first iteration $x^{(1)}$ of the fixed point iteration for this problem.

2b

Show that f is a contraction in the norm $\|\cdot\|_{\infty}$ with contraction constant $L=3 / 4$. Prove that the fixed point iteration converges to a solution of (1).

2c

Approximately how many fixed point iterations are needed when starting at $x^{(0)}$, in order to guarantee that the error $\left\|x^{(k)}-x\right\|_{\infty}$ is less than 10^{-3} ?

Solution:

2a
We get $x^{(1)}=f\left(x^{(0)}\right)=\binom{1 / 4}{1 / 4}$.

2b

The Jacobian of f is

$$
J_{f}(x)=\left(\begin{array}{cc}
-a b / 2 & -a^{2} / 4 \\
a / 4 & b / 4
\end{array}\right) .
$$

The matrix norm of the Jacobian is

$$
\left\|J_{f}(x)\right\|_{\mathcal{L}}=\max \left(a b / 2+a^{2} / 4, a / 4+b / 4\right) \leqslant 3 / 4 .
$$

Since D is convex, it follows that f is a contraction with contraction constant $L=3 / 4$.

We also note that f maps D into D : The first component always lies in $[1 / 4,1 / 2]$, and the second component always lies in $[1 / 8,3 / 8]$. By

Banach's fixed point theorem, the fixed point iteration converges to a solution of (1).

2c
We have the basic estimate

$$
\left\|x^{(k)}-x\right\| \leqslant\left\|x^{(1)}-x^{(0)}\right\| \frac{L^{k}}{1-L}=\frac{3}{4} \frac{(3 / 4)^{k}}{1 / 4}=3(3 / 4)^{k} .
$$

Thus, the error is less than 10^{-3} if

$$
k>\frac{\log \left(1 / 3 \cdot 10^{-3}\right)}{\log (3 / 4)} \approx 27.8
$$

Hence, we need $k \geqslant 28$.

Problem 3 Interpolation

Let $f(x)=\frac{1}{1+x}$ for $x \in[0,1]$.

3a

Let $p_{n} \in \mathcal{P}_{n}$ be the interpolant of f over the uniform mesh $x_{k}=\frac{k}{n}$, $k=0,1, \ldots, n$. Estimate the error $\left\|f-p_{n}\right\|_{\infty}$. Is it possible to find an $n \in \mathbb{N}$ so that the error is less than 10^{-4} ?
Hint: The j-th derivative of f is $f^{(j)}(x)=\frac{(-1)^{j} j!}{(1+x)^{j+1}}$.

3b

For a fixed $n \in \mathbb{N}$, how should we select the interpolation points $x_{0}, \ldots, x_{n} \in$ $[0,1]$ in order to make the error $\left\|f-p_{n}\right\|_{\infty}$ as small as possible? Estimate the error for these interpolation points.

Solution:

3a

We have $\left.\left\|f-p_{n}\right\|_{\infty} \leqslant \frac{\left\|f^{(n+1)}\right\|}{(n+1)!}\left\|\pi_{n+1}\right\|_{\infty}=\left\|\pi_{n+1}\right\|_{\infty}=\sup _{x \in[0,1]} \right\rvert\, x-$ $0||x-1 / n| \cdots| x-1 \mid \leqslant 1 / n \rightarrow 0$ as $n \rightarrow \infty$. Hence, the answer is "yes".

3b

The polynomial minimizing $\|f-p\|_{\infty}$ is the minimax polynomial, but we have no general approach to finding this polynomial.

Chebyshev interpolation points would yield the smallest value of $\left\|\pi_{n+1}\right\|_{\infty}$ for a general function f. If T_{n+1} is the Chebyshev polynomial on $[-1,1]$ then $C_{n+1}(x)=T_{n+1}(2 x-1)$ is the Chebyshev polynomial on $[0,1]$, and $2^{-n-1} 2^{-n} C_{n+1}=2^{-2 n-1} C_{n+1}$ is a monic polynomial with
zeros x_{0}, \ldots, x_{n}, and hence equals π_{n+1}. We get

$$
\left\|f-p_{n}\right\|_{\infty} \leqslant\left\|\pi_{n+1}\right\|_{\infty}=2^{-2 n-1}\left\|C_{n+1}\right\|_{\infty}=2^{-2 n-1}
$$

Problem 4 Approximation in the 2-norm

Define the weight function $w:[0,1] \rightarrow \mathbb{R}$ by $w(x)=x$. Find the polynomial $p \in \mathcal{P}_{1}$ which is closest to $f(x)=e^{x}$ in the weighted 2-norm

$$
\|f-p\|_{L_{w}^{2}}=\sqrt{\int_{0}^{1} w(x)|f(x)-p(x)|^{2} d x}
$$

Hint: The first orthogonal polynomials with respect to w are

$$
\varphi_{0}(x)=1, \quad \varphi_{1}(x)=x-\frac{2}{3}
$$

(you don't need to show this).
Solution: We have the projection formula

$$
p=\sum_{i=0}^{1} \frac{\left\langle\varphi_{i}, f\right\rangle}{\left\langle\varphi_{i}, \varphi_{i}\right\rangle} \varphi_{i}
$$

We compute

$$
\begin{aligned}
\left\langle\varphi_{0}, f\right\rangle=\int_{0}^{1} x e^{x}=1, & \left\langle\varphi_{0}, \varphi_{0}\right\rangle=\frac{1}{2} \\
\left\langle\varphi_{1}, f\right\rangle=\int_{0}^{1} x\left(x-\frac{2}{3}\right) e^{x}=e-\frac{8}{3} & \left\langle\varphi_{1}, \varphi_{1}\right\rangle=\frac{1}{36}
\end{aligned}
$$

Hence,

$$
p(x)=2+36\left(e-\frac{8}{3}\right)\left(x-\frac{2}{3}\right)
$$

Problem 5 Order of a quadrature rule

We want to approximate the integral $I(f)=\int_{-1}^{1} f(x) d x$. Let $x_{0}=-\frac{2}{3}$. Find $x_{1} \in[-1,1]$ so that the resulting quadrature method

$$
I(f) \approx I_{1}(f)=w_{0} f\left(x_{0}\right)+w_{1} f\left(x_{1}\right)
$$

has order at least 3 . Is it possible to find x_{1} so that the order is $4 ?$
Solution: The Lagrange functions are $L_{0}(x)=\frac{x-x_{0}}{x_{1}-x_{0}}$ and $L_{1}(x)=$ $\frac{x_{1}-x}{x_{1}-x_{0}}$, so the weights are $w_{0}=\frac{-2 x_{0}}{x_{1}-x_{0}}$ and $w_{1}=\frac{2 x_{1}}{x_{1}-x_{0}}$.

A quadrature method over two quadrature points has order at least 2 and at most 4 , so we only need to check that the order is at least 3 , that is, that the polynomial $p_{2}(x)=x^{2}$ is integrated exactly. On the one hand, $I\left(p_{2}\right)=\frac{2}{3}$. On the other hand,

$$
I_{1}\left(p_{2}\right)=w_{0} x_{0}^{2}+w_{1} x_{1}^{2}=\frac{-2 x_{1} x_{0}^{2}}{x_{1}-x_{0}}+\frac{2 x_{0} x_{1}^{2}}{x_{1}-x_{0}}=-2 x_{0} x_{1}
$$

We want this to be equal to $I\left(p_{2}\right)=\frac{2}{3}$, so we need

$$
x_{1}=-\frac{1}{2 x_{0}} \frac{2}{3}=\frac{1}{2}
$$

The only quadrature rule of order 4 is the Gauss method, and since the quadrature point $-\frac{2}{3}$ is not one of the Gauss quadrature points, we cannot achieve 4th order.

Problem 6 Composite quadrature

We wish to approximate the d-dimensional integral

$$
I(f):=\int_{[0,1]^{d}} f(x) d x
$$

for $f:[0,1]^{d} \rightarrow \mathbb{R}$. Consider the midpoint method

$$
I(f) \approx I_{0}(f):=f(1 / 2,1 / 2, \ldots, 1 / 2)
$$

$6 \mathbf{a}$

Prove that the approximation error can be bounded by

$$
\left|I(f)-I_{0}(f)\right| \leqslant \frac{1}{8}\left\|\nabla^{2} f\right\|_{\infty}
$$

where $\nabla^{2} f$ is the Hessian of f and the supremum is taken with respect to the matrix norm: $\left\|\nabla^{2} f\right\|_{\infty}=\sup _{x \in[0,1]^{d}}\left\|\nabla^{2} f(x)\right\|_{\mathcal{L}}$.
Hint: You might need the multi-dimensional Taylor expansion,

$$
f(x)=f(a)+\nabla f(a) \cdot(x-a)+R(x)
$$

where the remainder term can be bounded as $|R(x)| \leqslant \frac{1}{2}\left\|\nabla^{2} f\right\|_{\infty}\|x-a\|_{\infty}^{2}$.

6b

Write down the composite midpoint method $I_{0, m}$ for the above integral, and show that the error is at most

$$
\left|I(f)-I_{0, m}(f)\right| \leqslant \frac{\left\|\nabla^{2} f\right\|_{\infty}}{8 m^{2}}
$$

6c
If $d=20$ and $\left\|\nabla^{2} f\right\|_{\infty} \approx 1$, roughly how many function evaluations of f are needed in order to bring the error below $\varepsilon=10^{-4}$? Is this feasible (realistic) on a modern laptop?

Solution:

$6 a$

Set $a=(1 / 2, \ldots, 1 / 2)$ in the first-order Taylor expansion of f. Then

$$
I(f)=\int_{[0,1]^{d}} f(a)+\nabla f(a) \cdot(x-a)+R(x) d x
$$

$$
\begin{aligned}
& \left(\text { set } \bar{R}=\int_{[0,1]^{d}} R(x) d x\right) \\
& \qquad \begin{array}{ll}
& f(a)+\nabla f(a) \cdot \int_{[0,1]^{d}} x-a d x+\bar{R} \\
& =I_{0}(f)+\bar{R}
\end{array}
\end{aligned}
$$

where we used the fact that $I_{0}(f)=f(a)$ and that $\int x-a d x=0$. We can estimate \bar{R} by

$$
|\bar{R}| \leqslant \int_{[0,1]^{d}} \frac{1}{2}\left\|\nabla^{2} f\right\|_{\infty}\|x-a\|_{\infty}^{2} d x \leqslant \frac{1}{8}\left\|\nabla^{2} f\right\|_{\infty}
$$

since $\|x-a\|_{\infty} \leqslant 1 / 2$ for all x in the unit hypercube.

6b

The composite midpoint method is

$$
I_{0, m}(f)=\frac{1}{m^{d}} \sum_{i_{1}=1}^{m} \ldots \sum_{i_{d}=1}^{m} f\left(\frac{i_{1}-1 / 2}{m}, \ldots, \frac{i_{d}-1 / 2}{m}\right)
$$

In each hypercube $\mathcal{C}_{i}=\left[\frac{i_{1}-1}{m}, \frac{i_{1}}{m}, \ldots, \frac{i_{d}-1}{m}, \frac{i_{d}}{m}\right]$, the error committed can be bounded by

$$
\begin{aligned}
\left|\int_{\mathcal{C}_{i}} f(x) d x-\frac{1}{m^{d}} f\left(\frac{i_{1}-1 / 2}{m}, \ldots, \frac{i_{d}-1 / 2}{m}\right)\right| & =\left|\int_{[0,1]^{d}} \tilde{f}(y) d y-\tilde{f}(1 / 2, \ldots, 1 / 2)\right| \\
& \leqslant \frac{1}{8}\left\|\nabla^{2} \tilde{f}\right\|_{\infty}
\end{aligned}
$$

where $\tilde{f}(y)=\frac{1}{m^{d}} f\left(\frac{i_{1}-y}{m}, \ldots, \frac{i_{d}-y}{m}\right)$. We have $\left\|\nabla^{2} \tilde{f}\right\|_{\infty} \leqslant \frac{1}{m^{d+2}}\left\|\nabla^{2} f\right\|_{\infty}$, so summing up all the errors gives

$$
\left|I_{0, m}-I(f)\right| \leqslant \sum_{i_{1}=1}^{m} \cdots \sum_{i_{d}=1}^{m} \frac{1}{8} \frac{1}{m^{d+2}}\left\|\nabla^{2} f\right\|_{\infty}=\frac{1}{8 m^{2}}\left\|\nabla^{2} f\right\|_{\infty}
$$

6c

If $\frac{1}{8 m^{2}}\left\|\nabla^{2} f\right\|_{\infty}<\varepsilon$, i.e. $m>\sqrt{\frac{\left\|\nabla^{2} f\right\|_{\infty}}{8 \varepsilon}} \approx \sqrt{\frac{1}{8 \varepsilon}}$, then the error is no bigger than ε. Since the quadrature method uses $m_{\text {tot }}=m^{d}$ function evaluations, this corresponds to

$$
m_{\mathrm{tot}}>\frac{1}{8^{d / 2} \varepsilon^{d / 2}}=8^{-10} 10^{40} \approx 10^{31}
$$

The number of calculations needed is prohibitively large. (For comparison, today's fastest supercomputers can perform about 10^{18} floating point operations per second.)

