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In these notes we present applications of Gershgorin’s circle theorem, which is a
useful for rough estimates of eigenvalues of a matrix, three iteration methods for
computing eigenpairs of matrices, and a perturbation analysis on how sensitive eigen-
values are to perturbations in the matrix A. The topics covered here largely relate
to sections 5.3, and 5.7-10 in Suli and Mayers, with some topics treated exclusively
in these notes, such as power iteration.
The fundamental question we want to study is: how does one numerically compute
eigenvalues and eigenvectors of a matrix A ∈ Rn×n? A natural idea would be to
proceed as follows:

1. For λ ∈ R, compute the characteristic polynomial p(λ) = det(A−λI).

2. Find an eigenvalue of A by solving p(λ) = 0 using some iteration method (e.g.,
simple iteration, Newton’s method, Secant or bisection).

3. Having obtained a numerical solution λ̄= λK , compute eigenvector x̄ ∈Rn∗ (if
you also seek eigenvector) by solving (A− λ̄I)x̄= 0.

This approach turns out to be bad idea for two reasons. First, every step in your
iteration method, say, e.g., the Secant method

λk+1 = λk−p(λk)
(

λk−λk−1
p(λk)−p(λk−1)

)
k = 1,2, . . .

requires that you compute the determinant p(λk) = det(A−λkI). This costs O(n3)
operations per iteration (by the procedure we presented in Oblig 1, exercise 3), which
is very expensive when n is large. Second, if A is not a symmetric matrix, it may be
that some of the solutions to p(λ) = 0 are complex-valued, so then we rather have
to solve the more technical eigenvalue problem p : C→C with an iteration method,
essentially on R2. This is more complicated than when eigenvalues are real-valued,
but often possible. Having said that, we will largely shy away for complications
related to complex-valued in these notes by assuming that A is a symmetric matrix
(which ensures that all its eigenvalues are real-valued).
Before looking into more efficient algorithms for computing eigenvalues, we first con-
sider the more fundamental question of obtaining coarse estimates of the eigenvalues
of A. This is relevant information for most iteration methods, as they often require
good start values to achieve convergence.

5.1 Gershgorin theorems
Notation: For an n×n matrix A, let σ(A) = {λ1,λ2, . . . ,λn} denote its set of eigen-
values.
The following result is useful for estimating the values in the set σ(A). In the Gersh-
gorin results that follow, the eigenvalues λi are not ordered according to magnitude:

Theorem 5.1 (Gershgorin’s circle theorem) Consider a matrix A = (aij) ∈ Rn×n
and associate its i-th row to the off-diagonal radius

ri =
∑
j 6=i
|aij |, and the i-th Gershgorin disc Di := {z ∈ C | |z−aii| ≤ ri}.
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Then each eigenvalue lies inside some Gershgorin disc, λ ∈ Di for some 1 ≤ i ≤ n,
and thus also σ(A)⊂ ∪ni=1Di.

Proof: Let (λ,v) be an eigenpair of A. Multiply the eigenvector with a scalar so
that ‖v‖∞ = 1 and vi = 1 for some i ∈ {1, . . . ,n}. Then, |vj | ≤ 1 for all j ∈ {1, . . . ,n},
and we have that

(Av)i = (λv)i = λ and also (Av)i = aii+
∑
j 6=i

aijvj .

We conclude that

|λ−aii| ≤
∣∣∣∣∑
j 6=i

aijvj

∣∣∣∣≤∑
j 6=i
|aij | |vj |︸︷︷︸

≤1

≤
∑
j 6=i
|aij |= ri.

The argument holds for any eigenpair of A. �

Example 5.2

A=


1 0 5 0
1 3 0 0
0 1 5 1
0 1 0 10


with (approximately-valued) eigenvalues 1.80±0.61i,5.38,10.02

D1 =D(1,5), D2 =D(3,1), D3 =D(5,2), D4 =D(10,1).
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Remark 5.3 a) Note: The theorem does not say that each Gershgorin disc con-
tains an eigenvalue. Some discs may contain many, others none.
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b) If all the Gershgorin discs are disjoint, then one can show that each disc Di

must contain one and only one eigenvalue.

The last remark generalizes to the following theorem:

Theorem 5.4 It the Gershgorin discs of a matrix A∈Rn×n satisfies (for some order-
ing) that B1 = ∪ki=1Di is disjoint from B2 = ∪ni=k+1Di, meaning B1∩B2 = ∅, then
k eigenvalues belong to B1 and n−k eigenvalues belong to B2.
Furthermore, if all Gershgorin discs are disjoint, then each disc contains one and
only one eigenvalue.

Proof: See Suli and Mayers Theorem 5.5 for proof �

Applications of Gershgorin’s theorem
A matrix A ∈ Rn×n is said to be strictly diagonally dominant if

|aii|>
∑
j 6=i
|aij |

︸ ︷︷ ︸
=ri

∀i ∈ {1, . . . ,n}.

Theorem 5.5 (Diagonal dominance) Every strictly diagonally dominant matrix is
non-singular.

Proof: Every eigenvalue of A lies inside the union of Gershgorin discs, meaning

σ(A)⊂ ∪ni=1Di

The disc Di is centered at aii and has the radius ri < |aii|. The point z = 0 is not
inside the disc, since the diagonal dominance of A implies that

|aii−0|= |aii|> ri.

This holds for all i ∈ {1, . . . ,n}, so 0 6∈ ∪ni=1Di..
0 is therefore not an eigenvalue of A, and the non-singularity of A follows from

det(A) =
∏

λ∈σ(A)
λ 6= 0.

�

Example 5.6

A=

 2 1 −1/2
−1 3 1
0 1 −2


is non-singular as

|a11|= 2> 1 + |−1/2|, |a22|= 3> |−1|+ 1, and |a33|= |−2|> 1 + 0.
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If T ∈ Rn×n is invertible, then we recall that T−1AT is called a similarity transfor-
mation of A.
Similarity transformations preserve the spectrum σ(T−1AT ) = σ(A), since the char-
acteristic polynomial is preserved:

pT−1AT (λ) = det(T−1AT−λI) = det(T−1(A−λI)T ) = det(T−1)det(T )︸ ︷︷ ︸
=1

det(A−λI) = pA(λ).

Combining Gershgorin’s theorem with similarity transformation can lead to im-
proved estimates of the spectrum:

Example 5.7 The matrix

A=

10 2 3
−1 0 2
1 −1 1


has σ(A) = {10.226,0.387± 2.216i}. Let us assume that σ(A) is unknown and try
to estimate it.
By Gershgorin’s theorem,

D1 =D(10,5), D2 =D(0,3), D3 =D(1,2).

Since D1 does not intersect with D2∪D3 we know that D1 must contain one eigen-
value, and it must be real-valued one, as complex-valued eigenvalues come in conju-
gate pairs.

−5 0 5 10 15
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Figure 5.1: Gershgorin circles D1,D2,D3 of A, and eigenvaules in orange squares.

To improve our information of the dominant eigenvalue λ1, consider the similarity
transformation

Ã= T−1AT with T =

1 0 0
0 α 0
0 0 α

 =⇒ Ã=

 10 2α 3α
−1/α 0 2
1/α −1 1


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Since σ(Ã) = σ(A), we apply Gershgorin’s theorem on Ã to obtain the discs

D̃1 =B((10,0),5α), D̃2 =B((0,0),2 + 1/α), D̃3 =B((1,0),1 + 1/α).

To ensure that λ1 ∈ D̃1, we need to choose α > 0 so that

D̃1∩ (D̃2∪ D̃3) = ∅ ⇐⇒ D̃1∩D2 ⇐⇒ 10−5α > 2 + 1/α.

This holds for instance when α = 1/7. Hence λ1 ∈ D̃1(α = 1/7) and real-valued:
λ1 ∈ [10−5/7,10 + 5/7].
One could also try to improve the information on λ2 and λ3 by varying α, but the
considered similarity transformation is not suitable for that purpose.
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Figure 5.2: Gershgorin discs D̃1, D̃2 and D̃3 of Ã for α = 1/7 in blue, and black
Gershgorin discs for D1,D2 and D3 for Ã= A with α = 1.

5.2 Power iteration
Is an algorithm that computes the dominating (largest in absolute value) eigenvalue
of a matrix.
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Algorithm 1: Power iteration
Data: A ∈ Rn×n
Choose a start vector x(0) = x0 ∈ Rn \{0}.
for k = 1,2, . . . do

x(k)← Ax(k−1) (5.1)
Compute the normalized vector

z(k)← x(k)

‖x(k)‖2

and the so-called Rayleigh quotient

λ(k)← (z(k))TAz(k).

end

Remark 5.8 a) Let λ1 denote the dominating eigenvalue of A Then under some
assumptions,

lim
k→∞

λ(k) = λ1

and z(k) will asymptotically belong to the eigenspace of λ1.

b) Normally, one replaces the step (5.1) by

z(k+1) = Az(k)

‖Az(k)‖2
,

to avoid the need for storing the (x(k)) sequence.

Example 5.9 Consider

A=
[
7/2 5
5/2 1

]
with σ(A) = {6,−3/2} and v1 = 1√

5

[
2
1

]

The start vector
x(0) =

[
1
0

]
yields

x(1) = Ax(0) = 1
2

[
7
5

]
, x(2) = Ax(1) = 1

4

[
99
45

]
, x(3) = 1

8

[
1143
585

]
. . .

and the following sequence approximates λ1:

λ(1) = (z(1))TAz(1) = 6.2027, λ(2) = (z(2))TAz(2) = 5.8973, . . . , λ(8) = 6.0001

and limk→∞ z
(k) = v1. (see Remark 5.11b)). Numerical verification of this conver-

gence:∥∥∥∥z(1)−v1

∥∥∥∥
2

= 0.1564,
∥∥∥∥z(2)−v1

∥∥∥∥
2

= 0.0370, . . . ,
∥∥∥∥z(10)−v1

∥∥∥∥
2

= 5.7220 ·10−7.
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Theorem 5.10 (Convergence of the power iteration) Let A ∈ Rn×n be symmetric
with real-valued eigenvalues λ1,λ2, . . . ,λn ∈ R such that

λ1 = λ2 = . . .= λr, and |λr|> |λr+1|> .. . > |λn| for some r ≤ n,

and corresponding orthonormal eigenvectors v1, . . . , vn. Let the start vector for the
power iteration be

x(0) =
n∑
j=1

αjvj with
r∑
j=1
|αj | 6= 0.

Then, the normalized power iteration sequence z(k) := x(k)/‖x(k)‖ satisfies

Az(k) = λ1z
(k) +O(qk) where q := |λr+1|

|λ1|
,

and
λ(k) =

(
z(k)

)T
Az(k) = λ1 +O(q2k).

For the sake of clarity, the notation y(k) =w+O(qk) for a sequence of vectors {y(k)}k
in Rn means that there exists a constant C > 0 such that

‖y(k)−w‖ ≤ Cqk ∀k ≥ 0.

Proof: By writing

x(0) =
r∑
j=1

αjvj︸ ︷︷ ︸
=:ṽ1

+
n∑

j=r+1
αjvj ,

we obtain that

x(1) = Ax(0) = Aṽ1 +
n∑

j=r+1
αjAvj = λ1ṽ1 +

n∑
j=r+1

αjλjvj

and, similarly,

x(k) = Akx(0) = λk1 ṽ1 +
n∑

j=r+1
αjλ

k
j vj .

This implies that,

λ−k1 x(k) = ṽ1 +
n∑

j=r+1
αj

(
λj
λ1

)k
vj = ṽ1 +O(qk),

and by Taylor expansion,

z(k) = x(k)

‖x(k)‖
= x(k)

|λk1|‖λ−k1 x(k)‖
= (λ1/|λk|)ṽ1 +O(qk)

‖ṽ1‖+O(qk) = sgn(λk1) ṽ1
‖ṽ1‖

+O(qk).

We conclude that

Az(k) = Asgn(λk1) ṽ1
‖ṽ1‖

+O(qk) = sgn(λk1) Aṽ1
‖ṽ1‖

+O(qk) = λ1
x(k)

‖x(k)‖
+O(qk), .
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By the orthogonality of the eigenvectors, note further that

(x(k))Tx(k) =
λk1 ṽ1 +

n∑
j=r+1

αjλ
k
j vj

T λk1 ṽ1 +
n∑

j=r+1
αjλ

k
j vj

=λ2k
1 ‖ṽ1‖22 +

n∑
j=r+1

α2
jλ

2k
j

and
(x(k))TAx(k) = λ2k+1

1 ‖ṽ1‖22 +
n∑

j=r+1
α2
jλ

2k+1
j .

From this we obtain

(
z(k)

)T
Az(k) = (x(k))TAx(k)

(x(k))Tx(k) =
λ1‖ṽ1‖22 +∑n

j=r+1α
2
jλj

(
λj

λ1

)2k

‖ṽ1‖22 +∑n
j=r+1α

2
j

(
λj

λ1

)2k = λ1 +O(q2k)

�

Remark 5.11 a) The assumption that ∑r
j=1 |αj | 6= 0 for x(0) is often difficult to

verify, as one typically knows little about the eigenvectors of A. For instance
if the starting vector is drawn randomly, one tends to meet this assumption,
cf. Example 5.12.

b) The normalized vector

z(k) = sgn(λk1) ṽ1
‖ṽ1‖

+O(qk),

will converge as k→∞ iff λ1 ≥ 0. But regardless of this convergence, z(k) will
asymptotically belong to the span of ṽ1, which belongs to the eigenspace of
the dominating eigenvalue.

c) The smaller the ratio between the sub-dominating and the dominating eigen-
value

q =
∣∣∣∣∣λr+1
λ1

∣∣∣∣∣
the faster the convergence is.

d) Power iteration also applies to diagonalizable and even to non-diagonalizable
square matrices, but proving particularly the latter result is more technical.

Example 5.12 (Sensitivity with respect to the start vector) Consider the matrix
in the previous example. How sensitive is the power iteration to the start vector
x(0) ?
Experiment: draw the components in x(0) as independent U [0,1] random variables,
and compute

z(10) = x(10)/‖x(10)‖2
We repeat the experiment 5 times. Matlab code:
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x0 = rand(2,5) %5 columns with x0 vectors
x10 = A^(10) * x0;
z =zeros(2,5);
for i = 1:5

z(:,i) = x10(:,i)/norm(x10(:,i));
end
z % output

This yields the output

x0 =

0.7513 0.5060 0.8909 0.5472 0.1493
0.2551 0.6991 0.9593 0.1386 0.2575

z =

0.8944 0.8944 0.8944 0.8944 0.8944
0.4472 0.4472 0.4472 0.4472 0.4472

Definition 5.13 (Rayleigh quotient) For a symmetric A ∈ Rn×n, the Rayleigh quo-
tient for a nonzero vector x ∈ Rn is defined by

R(x) := xTAx

xTx

(The Rayleigh quotient is normally defined only for symmetric matrices A, but we
used a similar quotient mapping for more general matrices in the power iteration
algorithm.)

Theorem 5.14 Let A ∈ Rn×nsym with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn. Then it holds
that

λ1 = sup
x∈Rn

∗

R(x) λn = inf
x∈Rn

∗
R(x)

Proof: Let {(λi,vi)}ni=1 denote the eigenpairs of A. Since A is symmetric we may
assume the eigenvectors are orthonormal (as any symmetric matrix is orthogonally
diagonalizable). Any x ∈ Rn can thus be written

x=
n∑
j=1

αjvj

and
R(x) = xTAx

xTx
=
∑
j,kαjαkv

T
k Avj∑

j,kαjαkv
T
k vj

=
∑n
j=1α

2
jλj∑

j,kα
2
j

≤
∑n
j=1α

2
jλ1∑

j α
2
j

= λ1.

And by x = v1, we obtain R(x) = λ1. The lower bound R(x) ≥ λn and R(vn) = λn
is proved similarly. �
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Remark 5.15 a) For any eigenvector vj , it holds that

R(vj) = λj .

b) For the approximation of an eigenvector ṽ = vj +∆v where ∆v =∑n
i=1 εivi, it

holds that (exercise)

|R(ṽ)−λj | ≤ 2(n−1)‖A‖2‖∆v‖22.

5.3 Inverse iteration/inverse power method
If A has eigenvalues {λi}ni=1 that can be ordered

|λn|< |λn−1| ≤ . . .≤ λ1,

then A−1 has eigenvalues {λ−1
i }ni=1 with

|λ−1
n |> |λ−1

n−1|> .. .

If we apply the inverse power iteration

Ax(k+1) = x(k) k = 0,1, . . .

and if x(0) =∑n
j=1αjvj with αn 6= 0, then x(k) is asymptotically eigenvector to λ−1

n

of A−1, and also to λn of A, since

A−1x= λ−1
n x =⇒ Ax= λnx.

And
λ(k) =R(x(k))→ λn as k→∞.

Example 5.16 Consider again

A=
[
7/2 5
5/2 1

]
with σ(A) = {6,−3/2} and v2 = 1√

2

[
1
−1

]

Inverse iterations applied to the start vector

x(0) =
[
1
0

]

yields in Matlab
x = [1; 0]; % startvector
z = zeros(2,7);
for i = 1:7

x = A\x;
z(:,i) = x/norm(x);

end
z % i-th column of z equals z^(i)
%%% OUTPUT %%%
z =

-0.3714 0.7682 -0.6902 0.7112 -0.7061 0.7074 -0.7070
0.9285 -0.6402 0.7236 -0.7030 0.7081 -0.7068 0.7072
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5.3.1 Shift

Inverse iteration may also compute the eigenvalue of A closest to a µ ∈ R through
the following steps:

1. Apply inverse iterations to the shifted matrix (A−µI):

(A−µI)x(k+1) = x(k) for k = 0,1, . . .

2. The dominant eigenvalue of (A−µI)−1 equals

λ̂−1 = (λi−µ)−1,

where λi = argminλ∈σ(A) |λ−µ|= λclosest to µ.

3. If x(0) = ∑n
j=1αjvj with αi 6= 0, then x(k) is asymptotically eigenvector to

(λi−µ)−1 of (A−µI)−1, and also to λi of A, since

(A−µI)−1x= (λi−µ)−1x =⇒ (A−µI)x= (λi−µ)x =⇒ Ax= λix

And
λ(k) =R(x(k))→ λi as k→∞.

Summary
• Gershgorin’s circle theorem may be used in combination with similarity trans-

formations to improve eigenvalue estimates.

• Power iteration and inverse iteration are methods for computing eigenpairs of
matrices.

5.4 QR iteration
QR iteration can be viewed as an extension of the power iteration method that
simultaneously computes all eigenvalues of a matrix.
We recall that for A ∈ Rn×nsym , the power iteration

x(m) = Ax(m−1) (5.2)

z(m) = x(m)

‖x(m)‖2
(5.3)

λ(m) = (z(m))TAz(m) (5.4)
(5.5)

computes the dominant eigenvalue of A, and an eigenvector in the corresponding
eigenspace.
QR iterations computes (under some assumptions) all eigenpairs of A:
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Algorithm 2: QR iteration
Data: A ∈ Rn×n
Set A0 = A.
for m= 0,1,2, . . . do

Compute a QR factorization

QmRm = Am

for an orthogonal Qm ∈ Rn×n and an upper triangular Rm ∈ Rn×n.
Assign value

Am+1←RmQm.

end

Remark 5.17 a) Under some assumptions, the sequence of matrices {Am} con-
verges to an upper triangular matrix with the eigenvalues of A on its diagonal
as m→∞.
We will show that QR iteration is a sequence of orthogonal similarity trans-
forms

Am+1 = (Q0Q1 . . .Qm)TA(Q0Q1 . . .Qm).
The diagonal components of Am may thus be viewed as an extension of
Rayleigh quotient iteration

λ(m) = (z(m))TAz(m).

b) The set of orthogonal n×n matrices equipped with the matrix multiplication
operation form a group. The closure property is most important for us:

A,B ∈ Rn×n orthogonal =⇒ C = AB is orthogonal. (5.6)

Example 5.18 (Application of QR iteration) Consider

A=

0.7491 1.5494 0.7901
1.5494 0.3120 1.0222
0.7901 1.0222 1.2022


%%Matlab implementation of QR iteration
Qm = eye(length(A));
for m=0:100

[Q,R] = qr(A);
A = R*Q;
Qm = Qm*Q; % for eigenvectors Q^{(m)}

end

Results:

A5 =

2.9973 0.0087 0.0000
0.0087 −1.0705 0.0002
0.0000 0.0002 0.3366

 , A10 =

 2.9973 −0.0001 −0.0000
−0.0001 −1.0705 0.0000
−0.0000 0.0000 0.3366





13

and

Q(5) =

0.5919 −0.6042 −0.5335
0.5598 0.7844 −0.2672
0.5799 −0.1405 0.8025

 , Q(10) =

−0.5906 0.6053 −0.5336
−0.5614 −0.7832 −0.2671
−0.5796 0.1418 0.8024


Compare to reference eigenvalues of A:λ1

λ2
λ3

=

 2.9973
−1.0705
0.3366


and eigenvectors

[v1 v2 v3] =

0.5906 0.6053 0.5336
0.5614 −0.7832 0.2671
0.5796 0.1418 −0.8024


Example 5.19 (Application of the QR iteration method)

%%Matlab implementation
%A_0 = A
for m=0:10

[Q,R] = qr(A); % Q_{m}*R_{m} = A_m
A = R*Q; % A_{m+1} = R_m*Q_m

end

QR iteration applies under some conditions not only to symmetric but also to diag-
onalizable matrices (for definition see last subsection of notes), as for example the
matrix

A=

 1.271 −6.409 9.208
−2.875 −25.668 38.705
−2.120 −20.259 30.397


This matrix is diagonalizable as

A= TDT−1, with T =

0.298 0.938 0.055
0.756 0.245 0.820
0.582 0.244 0.569

 and D =

3 0 0
0 2 0
0 0 1


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and QR iterations yield:

A0 = A=

 1.271 −6.409 9.208
−2.875 −25.668 38.705
−2.120 −20.259 30.397



A1 =

 3.340 0.175 −58.656
−0.444 1.915 13.242
0.010 −0.002 0.745



A2 =

 3.175 0.432 59.897
−0.237 1.898 −5.395
−0.003 0.001 0.927


...

A10 =

 3.005 0.756 59.787
−0.007 1.995 6.519
−0.000 0.000 1.000


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5.5 Theoretical results for QR iteration
Lemma 5.20 (Properties of QR iteration) For the iterative method

A0 = A

QmRm = Am

Am+1 =RmQm

it holds that

i) Am+1 =QTmAmQm

ii) Am = (Q(m))TAQ(m) where Q(m) =Q0Q1 . . .Qm−1 is orthogonal (cf. (5.6)).

iii) For the matrix power, it holds that Am = Q(m)R(m) for any integer m ≥ 1,
where R(m) =Rm−1 . . .R0 is upper triangular (cf. (??)).

Proof:

i):
Am =QmRm =⇒ Rm =QTmAm

and thereby
Am+1 = PRmQm =QTmAmQm.

ii): By iterative use of property i),

Am =QTm−1 Am−1 Qm−1

=QTm−1 Q
T
m−2Am−2 Qm−2Qm−1

= . . .=QTm−1 . . .Q
T
0︸ ︷︷ ︸

(Q(m))T

A0︸︷︷︸
A

Q0 . . .Qm−1︸ ︷︷ ︸
Q(m)

.

iii): We prove this property by induction. The property holds for m = 1 as by
definition, Q(1) =Q0, R(1) =R0 and

A1 = A=Q0R0 =Q(1)R(1).

Assume that Am = Q(m)R(m) for some m ≥ 1, and observe that that by ii)
that A = Q(m)Am(Q(m))T and that by the QR decomposition QmRm = Am.
Consequently,

Am+1 = AAm

=Q(m)Am(Q(m))TQ(m)R(m)

=Q(m)AmR
(m)

=Q(m)QmRmR
(m)

=Q(m+1)R(m+1).
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�

Remark 5.21 A hand-waving idea of why the method works goes as follows:

a) Considering the power iteration x(m) = Ame1 with the standard basis vector
e1. Then, if e1 contains a non-zero contribution from the eigenspace of the
dominating eigenvalue, we know that x(m) asymptotically is an eigenvector of
λmax.
Moreover

x(m) = Ame1
iii)= Q(m)R(m)e1 =Q(m)


R

(m)
11
0
...
0

=R
(m)
11 q

(m)
1

where q(m)
1 ∈Rn denotes the first column ofQ(m). Consequently, q(m)

1 is asymp-
totically an eigenvector to λmax, and, to leading order,

Ame1
ii)= (Q(m))TAQ(m)e1 = (Q(m))TAq(m)

1 = (Q(m))Tλmaxq
(m)
1 = λmaxe1.

Conclusion: Ame1 converges towards λmaxe1 as m→∞.

b) With a similar argument applied to inverse iteration of a non-singular A, con-
sidering the iteration x(m) = eTnA

−m, one can verify that the last row of Am
equals (0, . . . ,0,λn).

Theorem 5.22 (Convergence of QR iteration) Let A ∈ Rn×nsym with eigenvalue de-
composition

A=QΛQT , with Λ = diag(λ1, . . . ,λn),
where Q is orthogonal and eigenvalues are non-repeating and satisfying

|λ1|> |λ2|> .. . > |λn|> 0.

Then the QR iteration sequence Am =RmQm = (Q(m))TAQ(m) satisfies

lim
m→∞Am = Λ and Q(m) ≈ [±v1, ±v2, . . . ,±vn] for m� 1.

Proof of Theorem 5.22 (not curriculum)

For those interested, we include a proof of QR iteration. Note however that this
proof and the rest of section 5.5 is not part of curriculum.
The following result will be useful for proving the theorem:

Lemma 5.23 If U ∈ Rn×n is upper triangular and non-singular, then U−1 is also
upper triangular.
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(See MAT3110 course Exercise 1 for September 27.)
Proof of Theorem 5.22: Let QT = LU be an LU factorization of QT where we recall
that this means U ∈ Rn×n is upper triangular and L ∈ Rn×n is lower triangular.
(NB! sometimes a pivot is also needed in the LU factorization, we assume not here,
see Remark 5.25 for extension to that setting.)
The eigendecomposition of A combined with LU factorization of Q give the relation-
ship

Am = (QΛQT )m =QΛmQT =QΛmLU,
and by Lemma 5.20 iii) we also have that

Am =Q(m)R(m) = (Q0 . . .Qm−1)︸ ︷︷ ︸
orthogonal

(Rm−1 . . .R0)︸ ︷︷ ︸
upper triangular

Consequently,
QΛmLΛ−m =Q(m)R(m)U−1Λ−m (5.7)

and R(m)U−1Λ−m is upper triangular.
Since L is unit lower triangular,

(ΛmLΛ−m)ij = Lij

(
λi
λj

)m
=


Lij

(
λi
λj

)m
j < i

1 i= j

0 otherwise.

We conclude that for p := maxi=1,...,n |λi+1/λi|,
ΛmLΛ−m = I+O(pm)

QΛmLΛ−m =Q(I+O(pm)) =Q+O(pm)
and by (5.7) also that

Q(m)R(m)U−1Λ−m =QΛmLΛ−m =Q+O(pm) (5.8)
(Remark: we seek to prove that

Am = (Q(m))TAQ(m)→ Λ =QTAQ,

and our path will be to study in what sense Q(m) asymptotically approximates Q.
We know now that Q(m)R(m)U−1Λ−m → Q, so by next studying the asymptotic
behavior of the sequence {R(m)U−1Λ−m}, we will also gain knowledge on how Q(m)

relates to Q.)
Decomposing the upper diagonal matrix

R(m)U−1Λ−m =:D(m) +N (m)

where D(m) denotes the diagonal part of the matrix and N (m) denotes the strictly
upper triangular part, we obtain

(R(m)U−1Λ−m)T (R(m)U−1Λ−m)
= (D(m) +N (m))T (D(m) +N (m))
= (D(m))2 + D(m)N (m) + (N (m))TD(m) + (N (m))TN (m)︸ ︷︷ ︸

=0︸ ︷︷ ︸
strictly non-diagonal
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But using (5.8) we also have that

(R(m)U−1Λ−m)T (R(m)U−1Λ−m)

=
(
Q(m)R(m)U−1Λ−m

)T(
Q(m)R(m)U−1Λ−m

)
= I+O(pm).

Conclusion:
(D(m))2 = I+O(pm) and N (m) = O(pm).

This means (D(m)
ii )2 = 1 +O(pm) for i= 1, . . . ,n, i.e.,

either D(m)
ii =−1 +O(pm) or D(m)

ii = 1 +O(pm).

So if we take the sequence of diagonal matrices {S(m)} with S(m)
ii = sgn(D(m)

ii ), then

S(m) =D(m) +O(pm)

and
R(m)U−1Λ−m =D(m) +N (m) = S(m) +O(pm).

Hence,
Q(m)R(m)U−1Λ−m =Q(m)S(m) +O(pm).

And by (5.8) and using that S(m) is symmetric and orthogonal, we obtain (by right
multiplication of S(m) in first equality)

Q(m)S(m) =Q+O(pm) =⇒ Q(m) =QS(m) +O(pm)

We have finally reached the end of the proof:

Am = (Q(m))TAQ(m) = (S(m))QTAQ(S(m))T +O(pm) =S(m)ΛS(m) +O(pm) = Λ+O(pm).

�

Example 5.24 (What happens when A has complex-valued eigenvalues?) When
there is a complex-valued pair of eigenvalues

λj = λj+1,

then |λj |= |λj+1|. This setting does not fulfill the separation-of-eigenvalues assump-
tion in Theorem 5.22, and it turns out that Am then will converge towards a block
upper triangular matrix, as the diagonal of Am will contain a 2× 2 block matrix
whose matrix has eigenvalues λj ad λj+1 (Am converges to the real Schur form of
A). For example, consider

A=

30 −18 5
15 9 −5
9 −27 24

 with σ(A) = {27 + 9i,27−9i,9}.
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QR iteration with start matrix A0 = A yields

A1 =

24.112 −20.311 25.109
6.315 34.734 −6.260
−1.941 5.921 4.154

 , A5 =

35.799 −14.881 −19.641
10.604 18.236 −23.492
−0.016 0.053 8.965


and

A10 =

22.957 −20.934 30.563
4.650 31.043 −0.604
0.000 −0.000 9.000


where

σ

([
22.957 −20.934
4.650 31.043

])
= {26.999 + 9.000i,26.999−9.000i}

Remark 5.25 a) Theorem 5.22 extends to any diagonalizable A∈Rn×n with real-
valued non-repeating eigenvalues. Then Am converges to an upper triangular
matrix with diagonal (λ1, . . . ,λn).

b) We assumed in the proof that for A=QΛQT , there exists an LU factorization
of QT = LU . In general, one may need to partial pivoting as well to achieve
this: PQT = LU , where P is a permutation matrix. Observing that P TP = I
and

A=QΛQT = (QP T )PΛP T (PQT )
with PΛP T a reordered diagonal matrix, the result extends with

Am→ PΛP T .

5.6 Tridiagonalization of A
Every QR iteration step of a full matrix Am costs O(n3) operations. “Precondi-
tioning” your start matrix through similarity transforms may improve the efficiency
considerably. That is, instead of using A0 = A, set A0 = QAQT , where Q is an
orthogonal matrix being a product of Householder transformations (see Suli and
Mayers, Chp 5.5 if interested). The upper Hessenberg matrix approach (requiring
three Householder transformations):

A=


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


QAQT

7−→


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗


︸ ︷︷ ︸

upper Hessenberg

which becomes tridiagonal for symmetric matrices:

A= AT =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


QAQT

7−→


∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗


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Reason for efficiency gain: the upper Hessenberg form is preserved over QR itera-
tions, and (efficiently) computing the QR decomposition of a full matrix Am requires
O(n3) operations. This is cost reduced to O(n2) for upper Hessenberg matrices and
O(n) for tridiagonal ones. If interested, see e.g., Dahmen and Reusken “Numerik
für Ingenieure und Naturwissenschaftler”, chp 7.7.3.

Householder transformations

We next provide a practical example on how to use Householder transformations
for triangularization of symmetric matrices A∈R5×5. The practical example carries
right over to the general setting of how to proceed for A∈Rn×nsym , but for more details
on the theory of tridiagonalization, see Suli and Mayers Chp 5.5.
A matrix H ∈ Rn×n on the form

H = I− 2
vT v

vvT , with c ∈ R and v ∈ Rn

is called a Householder matrix/transformation.

Properties:

• Orthogonality: HTH = I

• And for any vector x ∈ Rn∗ , one can find a vector v ∈ Rn s.t.

Hx=


6= 0
0
...
0

 (first element is non-zero, others set to zero)

The following choice is for instance one option (that we will stick to here):

v = x+ ce1 with c=
‖x‖2 if x1 ≥ 0
−‖x‖2 if x1 < 0,

=⇒ Hx=−ce1. (5.9)

(see e.g., Suli and Mayers Lemma 5.4)
We next show how to tridiagonalize the following symmetric 5× 5 matrix using a
sequence of Householder transformations:

A =


4 1 2 1 3
1 5 0 2 2
2 0 3 1 1
1 2 1 6 0
3 2 1 0 7


Step 1: Find H ∈ R4×4 such that last three elements of first row is removed, mean
for

x=


a21
a31
a41
a51

=


1
2
1
3

 we seek H s.t. Hx=


6= 0
0
0
0

=
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Pick v = x+‖x‖2e1 = (1 +
√

15,2,1,3)T and set

H = I4−
2
vT v

vvT =


−0.2582 −0.5164 −0.2582 −0.7746
−0.5164 0.7881 −0.1060 −0.3179
−0.2582 −0.1060 0.9470 −0.1590
−0.7746 −0.3179 −0.1590 0.5231


Then, by (5.9)

Hx=−‖x‖2e1 =−
√

15e1

And for
H(5,4) :=

[
1 0T
0 H

]
∈ R5×5, 0 ∈ R4×1

We obtain

H(5,4)AH
T
(5,4) =


4.0000 −3.8730 0 −0.0000 0
−3.8730 7.8667 2.0243 −0.2788 0.4545

0 2.0243 4.1788 0.2387 0.8876
−0.0000 −0.2788 0.2387 4.9440 −2.0823

0 0.4545 0.8876 −2.0823 4.0106


Motivation for above structure:

• Multiplying with H(5,4) from left preserves/leaves elements in first row un-
changed.

• Thereafter by HT
(5,4) from right preserves elements in first column (and zeros

tail elements in first row by same reason H(5,4) zeroed tail elements in first
column).

Step 2: Find H ∈R3×3 that zeros last two terms in column 2 of matrix H(5,4)AH
T
(5,4)

, i.e. of vector

x=

 2.0243
−0.2788
0.4545


Choose

v = x+‖x‖2e1 and H = I− 2
vT v

vvT .

Set
H(4,3) =

[
I2 0T
0 H

]
∈ R5×5, 0 ∈ R3×2

and obtain

H(4,3)H(5,4)AH
T
(5,4)H

T
(4,3) =


4.0000 −3.8730 −0.0000 −0.0000 −0.0000
−3.8730 7.8667 −2.0934 0.0000 −0.0000
−0.0000 −2.0934 4.6161 0.2827 −1.0331
−0.0000 0.0000 0.2827 4.9360 −1.9441
−0.0000 0.0000 −1.0331 −1.9441 3.5812


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After another such step, finding H(3,2) that zeros last element in third column of
latest matrix and leaves first three rows unchanged, we have a tridiagonal symmetric
matrix

A0 =H(3,2)H(4,3)H(5,4)︸ ︷︷ ︸
Q

AHT
(5,4)H

T
(4,3)H

T
(3,2)︸ ︷︷ ︸

QT

=


4.0000 −3.8730 −0.0000 0.0000 −0.0000
−3.8730 7.8667 −2.0934 −0.0000 −0.0000
−0.0000 −2.0934 4.6161 −1.0711 0.0000
0.0000 0.0000 −1.0711 4.6654 −2.0181
−0.0000 0.0000 0 −2.0181 3.8519


5.7 Perturbation analysis
Definition 5.26 A matrix A ∈ Rn×n is diagonalizable if and only if there exists an
invertible matrix T ∈ Rn×n, s.t.

D = T−1AT,

where D is a diagonal matrix.

A sufficient condition for A being diagonalizable is that the matrix has n distinct
eigenvalues (as then the eigenvectors are linearly independent and the matrix T =
[v1 v2 . . .vn] will diagonalize A).

Theorem 5.27 (Bauer–Fike) Consider a diagonalizable matrix A= TΛT−1 ∈ Rn×n
with Λ = diag(λ1, . . . ,λn), and a perturbation ∆A ∈ Rn×n. Then for any eigenvalue
of the perturbed matrix µ ∈ σ(A+ ∆A), it holds that

min
λ∈σ(A)

|µ−λ| ≤ ‖T‖2‖T−1‖2︸ ︷︷ ︸
=:κ2(T )

‖∆A‖2, (5.10)

Definition 5.28 (Absolute condition number) For the setting in Theorem 5.27 and
for the sake of interpreting our perturbation result, we think of/define

minλ∈σ(A) |µ−λ|
‖∆A‖2

(
= error output

error input

)

as the absolute condition number of µ = λ(A+ ∆A) (for comparision with course
literature, see (2.42) in Suli and Mayers). In other words, the inequality (5.10)
becomes

error output
error input = min

λ∈σ(A)

|µ−λ|
‖∆A‖2

≤ κ2(T ).

We refer to the eigenvalue problem as well-conditioned when κ2(T ) is “small”.

For proving the Theorem 5.27, we will use the fact that for any diagonal matrix
D = diag(d1, . . . ,dn)

‖D‖2 = max
i∈{1,...,n}

|di| (5.11)
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Proof of Theorem 5.27 : Since A−µI = T (Λ−µI)T−1, it holds that

‖(A−µI)−1‖2 = ‖T (Λ−µI)−1T−1‖2 ≤ ‖T‖2‖T−1‖2︸ ︷︷ ︸
=κ2(T )

‖(Λ−µI)−1‖2,

Since
(Λ−µI)−1 = diag

(
(λ1−µ)−1, . . . ,(λn−µ)−1

)
,

the property 5.11 implies that

‖(Λ−µI)−1‖2 = max
i∈{1,...,n}

|(λi−µ)−1|= 1
mini∈{1,...,n} |λi−µ|

.

Consequently,
‖(A−µI)−1‖2 ≤ κ2(T ) 1

mini∈{1,...,n} |λi−µ|
so that

min
i∈{1,...,n}

|λi−µ| ≤ κ2(T ) 1
‖(A−µI)−1‖2

.

Let v be an eigenvector satisfying

(A+ ∆A)v = µv, then (A−µI)v =−∆Av

and

‖v‖2 = ‖(A−µI)−1∆Av‖2≤‖(A−µI)−1‖2‖∆A‖2‖v‖2 =⇒ 1
‖(A−µI)−1‖2

≤‖∆A‖2.

�

Remark 5.29 a) The upper bound for absolute condition number of the eigen-
value problem, κ2(T ), only depends on T , and, perhaps surprisingly, not ex-
plicitly on the eigenvalues of A.

b) For symmetric A, we can find an orthogonal T . This implies that κ2(T ) =
1. (Eigenvalue perturbation is therefore a well-conditioned problem for such
matrices.)

c) In general, when eigenvalues are repeating, or clustered very closely together,
then they can be very sensitive to small perturbations in the matrix. Consider
for example the non-diagonalizable matrix (not covered by the Bauer–Fike
theorem):

A=
[
1 0
1 1

]
with repeated eigenvalue λ= 1. For

A+ ∆A=
[
1 ε
1 1

]

with eigenvalues 1±
√
ε.

Input/perturbation error ‖∆A‖2 = ε�
√
ε= output error.
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