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Let us assume you wish to approximate the integral If you need to integrate over an arbi-
trary interval [a, b] ⊂ R, perform a
change of variables.I( f ) =

∫ 1

0
f (x) dx

for some continuous function f : [0, 1] → R. The integral I( f )
can be thought of as the average value of f over [0, 1], so what we
are asking for is: What is the average, or “expected”, value of the
function f over the interval [0, 1]? In this note we review the Monte
Carlo approximation of I( f ), and we prove an error estimate. The
impatient reader may skip to the rigorous explanation on pp. 2–10.

The Monte Carlo method was invented and developed by Stanislaw
Ulam1 and his colleagues. While being hospitalized for a longer pe- 1 Stanislaw Ulam (1909–1984) was

a Polish–American physicist and
mathematician who worked on the
Manhattan project to develop the
first atomic bomb. Among his many
achievements, he is perhaps best
known for the Ulam–Teller design of
the hydrogen bomb.

riod of time, Ulam spent his time playing solitaire, and became
interested in computing the probability p of a game of solitaire
coming out successfully. Even for a first-rate mathematician like
Ulam, this proved too difficult to compute, but he came up with an
approximation that could easily be carried out: Play a large number
(say, M ∈ N) of games of solitaire, and note the number of times n
that the game comes out successfully. The true answer will then be
approximately p ≈ n/M.

Ulam quickly understood that the approach could be used for
problems in nuclear physics, and involved his colleague John von
Neumann in the endeavour to apply this new Monte Carlo method2 2 Supposedly named after the Monte

Carlo Casino in Monaco, which Ulam’s
uncle frequented.

using the newly developed electronic computers. Generally speak-
ing, the Monte Carlo consists of computing a large number of sam-
ples, and then averaging over these.

There are at least three ingredients that make n/M a good ap-
proximation of the true probability p:

(i) M must be moderately large,

(ii) the deck must be well-shuffled at the start of each game,

(iii) each game must be independent of the others.

As we will see, the error in the approximation scales as 1/
√

M,
which explains the first point. For the second point, if the deck
isn’t well-shuffled then certain starting decks (and hence, certain
outcomes of the game) will occur more often than others, making
the computation skewed. For the third point, if one experiment
influences successive experiments, then again the computation will
be skewed.

A quick explanation

Fix some M ∈ R. The Monte Carlo approximation to I( f ) takes M
random numbers X1, . . . , XM, uniformly distributed in the interval
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[0, 1], and returns On a computer you would compute
pseudo-random numbers, say, using the
Python function random.random().IM( f ) =

1
M

M

∑
m=1

f (Xm).

We can experimentally observe that IM( f )→ I( f ) as M→ ∞.

Exercise. Implement the Monte Carlo method in your favourite
programming language. Test it using f (x) = cos(x) and f (x) =

e−x2
, and with M = 2, 4, 8, . . . , 210.

Independence

Without further assumptions on the random variables X1, . . . , XM,
we might as well have chosen them to be equal: X1 = · · · = XM,
reducing the approximation to IM( f ) = f (X1). As you might
imagine, this would be a terrible approximation of I( f ). What Successive calls to the Python function

random.random() (or an analogous
function in other programming lan-
guages) will generate independent
random variables X1, X2, X3, . . . .

is lacking is not randomness, but independency: The random vari-
ables X1, . . . , XM must be independent from one another. Infor-
mally speaking, Xm is independent from Xn if knowing the value of
Xm(ω) will not make it any easier to guess the value of Xn.

A (mostly) rigorous explanation

For completeness, we first present probability spaces in a general
notation and setting and then we narrow our scope to the setting
that is relevant for this course: so-called continuous random vari-
ables.

General random variables

A triplet (Ω,F , P) consisting of the sample space Ω, the event
space F and a probability measure P is called a probability space.

• The samples/outcomes ω ∈ Ω will not necessarily be numbers,
vectors or functions; instead, we will treat Ω as an abstract set of
objects.

• An event E ⊂ Ω is a union of outcomes from Ω, and the event
space F is the set of all events that we need to measure the prob-
ability of.

• The probability measure P : F → [0, 1] is a mapping from the set
of events F to [0, 1]. The probability of an event E ∈ F is defined
as the value P(E). No event has a negative probability, and no
event has a probability larger than 1. In particular,

P(∅)︸ ︷︷ ︸
probability of empty set/event

= 0, P(Ω)︸ ︷︷ ︸
probability of full set/event

= 1,

and
P(Ω \ A) = 1−P(A) for any A ∈ F .
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• A (real-valued) random variable on a given space (Ω,F , P) is a
measurable mapping X : Ω → Rd satisfying that for all for all
(Borel) sets B ⊂ Rd, the event

{X ∈ B} = {ω ∈ Ω | X(ω) ∈ B} = X−1(B)

belongs to F so that the probability P(X ∈ B) is well defined. A Borel set in Rd is a set that can
be formed by countable unions and
intersections of open sets in Rd and
relative complements.

We note that Ω is the domain of the random variable, and Rd is
referred to as its state space.

Continuous random variables

A random variable X : Ω → Rd is called a continuous random
variable if there exists a non-negative integrable function ρ : Rd →
[0, ∞) such that

P(X ∈ B) =
∫

B
ρ(x) dx ∀B ⊂ Rd . (1)

The function ρ is called the probability density function (PDF) X.

Exercise. Constraint: Take B = Rd in (1) to show that all PDFs
must satisfy the following constraint:∫

Rd
ρ(x)dx = 1.

Any continuous random variable is uniquely described in terms
of its PDF. This relationship is often written X ∼ ρ, meaning X
has the density function ρ. Occasionally, one rather writes ρX to
compactly express that ρX is the PDF of X.

Further properties:

• The expected value or mean of a random variable X : Ω → Rd is
defined by the abstract integral

E[X] =
∫

Ω
X(ω)P(dω).

For continuous random variables, it is equivalently defined by

E[X] =
∫

Rd
xρX(x)dx.

The number E[X] ∈ Rd called the expected value of X.

• By the rules of integration, one can show that

E has unit mass: If X is constant, say, X(ω) = a for all ω ∈ Ω for
some a ∈ R, then E[X] = a.

E is positivity preserving: If X : Ω → [0, ∞) is a nonnegative ran-
dom variable, then E[X] > 0.

If f : Rd → R is a measurable mapping and X : Ω → Rd

is a continuous random variable, then f (X) is also a random
variable and

E[ f (X)] =
∫

Rd
f (x)ρX(x)dx.

E is linear: By the properties of joint densities (see below), one
can show that E[αX + Y] = αE[X] + E[Y] for every α ∈ R and
continuous random variables X, Y : Ω → Rd (and it also holds
more generally).
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Multiple/multivariate random varialbes

Given two continuous random variables X, Y : Ω → Rd with den-
sities X ∼ ρX and Y ∼ ρX , the tuple (X, Y) is also a continuous
density random variable with ρX,Y(x, y), satisfying that∫

Rd×Rd
ρX,Y(x, y)dx dy = 1

and the marginal density properties

ρX(x) =
∫

Rd
ρX,Y(x, y)dy, ρY(y) =

∫
Rd

ρX,Y(x, y)dx.

Further properties:

• Two random variables are independent if for all (Borel) sets in Informally speaking, independency
means that the knowledge of X(ω)
will not enable you to guess what
Y(ω) is, or vice versa.

A, B ⊂ Rd we have that

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B),

or equivalently (for continuous RV) if their joint density is muliti-
plicatively separable

ρX,Y(x, y) = ρX(x)ρY(y)

• Two continous random variables are identically distributed if for Identically distributed random vari-
ables “visit the same function values
equally often”, or “have the same
likelihood of returning a given value”.

all (Borel) sets A ⊂ Rd we have that

P(X ∈ A) = P(Y ∈ A),

or equivalently if their densities are equal: ρX = ρY.

Exercise. Show that if X and Y are identically distributed contin-
uous random variables, then E[X] = E[Y].

And that if X and Y are independent continuous random vari-
ables, then

E[XY] = E[X]E[Y].

• A collection of random variablesX1, . . . , Xm is called mutually
independent if for all (Borel) sets in A1, . . . , Am ⊂ Rd we have
that

P(X1 ∈ A, X2 ∈ A2, . . . , Xm ∈ Am) =
m

∏
i=1

P(Xi ∈ Ai)

or equivalently if their joint density is multiplicatively separable

ρX1,X2,...,Xm(x1, . . . , xm) =
m

∏
i=1

ρXi (xi).

• And for any collection of random variablesX1, . . . , Xm, linearity
yields that

E

[
1
m

m

∑
i=1

Xi

]
=

m

∑
i=1

E[Xi]

m
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Example. A random variable X : Ω → Rd is uniformly distributed on
[a, b]d if its PDF is given by

ρ(x) =
1

(b− a)d 1[a,b]d(x) =


1

(b−a)d x ∈ [a, b]d

0 else.

Random variables with this distribution is often written X ∼
U([a, b]d), which is equivalent to X ∼ (b− a)−d1[a,b]d .

Example. For the random variables X, Y ∼ U([0, 1]) are indepen-
dent if and only if their joint density is on the form

ρX,Y(x, y) = 1[0,1]2(x, y)

If X and Y are independent, their joint density tells us that we can
view (X, Y) as a vector-valued random variable with

(X, Y) ∼ U([0, 1])2.

Exercise. Show that the Gaussian random variable

(X, Y) ∼ ρX,Y(x, y) =
1

2π
√

1− ν2
exp

(
− x2 + y2 − 2νxy

2(1− ν2)

)
with a given (deterministic) constant ν ∈ (−1, 1), the scalar com-
ponents X and Y are independent random variables if and only if
ν = 0.

The Monte Carlo approximation

We can now define the Monte Carlo method. Assume that we wish
to approximate E[X] for some random variable X : Ω → R. Let It will soon become clear what E[ f (X)]

has to do with I( f ).X1, X2, . . . , XM be random variables which are mutually indepen-
dent and which all have the same density ρX .

The Monte Carlo approximation to E[X] is simply a fancy name for
the average of M of these variables

IM(ω) =
1
M

M

∑
m=1

Xm(ω) ∀ ω ∈ Ω.

We note that IM, being a scaled sum of random variables, is itself a
random variable, and that

IM(ω) ≈
∫

Rd
xρX(x)dx = E[X].

An error estimate

We now prove an estimate of the error in the Monte Carlo approx-
imation. Since IM is itself a random variable, we cannot guarantee
that the error E[X]− IM(ω) will be small regardless of the seed ω.
We will only be able to guarantee that the average error is small.

Our measure of error will be the root mean square error The mean square error measures how
much, on average, IM( f ) deviates from
E[X].

EM =

√
E
[
(E[X]− IM)2

]
.
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We square both sides and compute:

E2
M = E

[
E[X]2 − 2E[X]IM + I2

M

]
= E[X]2 − 2E[X]E[IM] + E

[
I2
M
]
. (since E is linear and has unit mass)

For the second term we can compute

E[IM] =
1
M

M

∑
m=1

E[Xm] (since E is linear)

=
1
M

M

∑
m=1

E[X] (since X and Xm are identically dis-
tributed)

= E[X].

For the third term we get

E
[
I2
M
]
= E

[(
1
M ∑M

m=1 Xm

) (
1
M ∑M

n=1 Xn

)]
=

1
M2

M

∑
m=1

M

∑
n=1

E
[
XmXn

]
(since E is linear)

=
1

M2

M

∑
m=1

M

∑
n=1
n 6=m

E[Xm]E[Xn] +
1

M2

M

∑
m=1

E
[
X2

m
]

(since Xm and Xn are independent
when n 6= m)

=
1

M2

M

∑
m=1

M

∑
n=1
n 6=m

E[X]2 +
1

M2

M

∑
m=1

E
[
X2] (since Xm, Xn and X are identically

distributed)

=
M2 −M

M2 E[X]2 +
1
M

E
[
X2]

=

(
1− 1

M

)
E[X]2 +

1
M

E
[
X2].

Inserting these two computations in the expression for the error E2
M,

we get

E2
M = E[X]2 − 2E[X]2 +

(
1− 1

M

)
E[X]2 +

1
M

E
[
X2]

=
E
[
X2]−E[X]2

M
.

The expression Var[X] = E
[
X2]−E[X]2 is the variance of the ran- Exercise: Show that Var[X] = E

[(
X −

E[X]
)2].dom variable X. Taking square roots we conclude:

Theorem 1. The root mean square error of the Monte Carlo approxima-
tion is σ[Y] is the standard deviation of Y.

Both the variance and the standard
deviation give an indication of how
much, on average, the random variable
deviates from its expected value.

EM =
σ[X]√

M

where σ[X] =
√

Var[X].

Since the standard deviation σ[X] is a constant, the Monte Carlo
error scales as M−1/2. In order to reduce the expected error by a
factor 1/2, you need to increase M by a factor 22 = 4.

Remark 2. Note that we can use the positivity preserving property
of expectation to overestimate the variation of X if X is bounded.
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In this case, choose constants a and b such that b ≥ supΩ X and
a ≤ infΩ X. Set c = (a + b)/2 and calculate −(b− a)/2 ≤ X− c ≤ (b− a)/2

Var[X] = E
[
(X−E[X])2

]
= E

[
((X− c)− (E[X]− c))2

]
= E

[
(X− c)2

]
− (E [X− c)])2

≤ E
[
(X− c)2

]
≤
( b− a

2

)2
.

This error estimate says that “in the (root mean square) average
sense” you can approximate E[X] by IM making a O(M−1/2) error.
However, IM is a random variable, so it would be convenient to
have results stating something like:

With 90% probability, |IM −E[X]| is less than 10−3.

In order to make such statements, we must first define probability.
For a continuous random variable X : Ω → R, we recall that the
probability of an event X ∈ A for any Borel set A ⊂ R can be
computed as

P(X ∈ A) =
∫

A
ρX(x)dx.

Yes, it’s the guy with the polynomials.
Lemma 3 (Chebyshev’s inequalities). Let X : Ω → R be a random
variable. Inequality 1, if E[|X|] < ∞, then for any t > 0

P(X ≥ t) ≤ E[|X|]
t

.

Inequality 2, if Var[X] < ∞, then for any t > 0

P(|X−E[X]| ≥ t) ≤ Var[X]

t2 .

We restrict ourselves to proving the result for continuous ran-
dom variables although it is true in general.

Proof. Let X ∼ ρ. Then, noting that x/t ≥ 1 for all x ≥ t, we have
that

P(X ≥ t) =
∫ ∞

−∞
1[t,∞)(x)ρ(x)dx ≤

∫ ∞

t

x
t

ρ(x)dx

≤
∫ ∞

−∞

|x|
t

ρ(x)dx = E

[
|X|

t

]
.

The last equality used that f (X) = |X|/t is a random variable, and
thus that

E[ f (X)] =
∫ ∞

−∞
f (x)ρ(x)dx.

This proves inequality 1. Inequality 2 follows by a similar argu-
ment. Let A = {y ∈ R | |y−E[X]|2 ≥ t2}, and note that

x ∈ A =⇒ |x−E[X]|2

t2 ≥ 1A(x) ≥ 1, and
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x /∈ A =⇒ |x−E[X]|2

t2 ≥ 1A(x) = 0.

Hence,

P(|X−E[X]| ≥ t) = P(|X−E[X]|2 ≥ t2) =
∫ ∞

−∞
1A(x)ρ(x)dx

≤
∫ ∞

−∞

|x−E[X]|2

t2 ρ(x)dx =
E[|X−E[X]|2]

t2 =
Var[X]

t2 .

Now we can get the kind of probabilistic error bounds that we
wanted. Using Chebyshev’s second inequality for the random vari-
able IM −E[X] we get

P(|IM −E[X]| ≥ ε) ≤ 1
ε2 Var[IM −E[X]]

=
1
ε2 E

2
M ≤

Var[X]

ε2M
≤

(supΩ X− infΩ X)2

4ε2M
, (2)

where the last inequality holds only if X is bounded.
We obtain that IM converges in probability to E[X], which is

defined as follows: for any ε > 0,

lim
M→∞

P(|IM −E[X]| ≥ ε) = 0.

We note that is a quite weak form of convergence as |IM(ω)−E[X]| → 0
need not hold for any ω ∈ Ω under convergence in probability.

By a more technical argument, one can also show P-almost sure
convergence, defined as:

P( lim
M→∞

IM 6= E[X]) = 0.

This is a stronger convergence, as it implies that for almost all sam-
ples ω ∈ Ω

|IM(ω)−E[X]| → 0 as M→ ∞.

Exercise. (Technical and not curriculum, but for those that are
curious on the difference between convergence in probability and
almost sure convergence.) Let Xn ∼ U([0, 1]) for n = 1, 2, . . .
be a sequence of mutually independent random variables, and
let Yn := 1[0,n−1](Xn). Show that then P(Yn = 0) = 1 − n−1

and P(Yn = 1) = n−1 and that as n → ∞, then Yn converges in
probability to 0, while Yn does not converge almost surely to 0.

Hint: For the last point, you can use that

P( lim
M→∞

Yn 6= 0) = P(∩∞
n=1 ∪∞

m=n {Yn = 1})

and that apply the second Borel-Cantelli lemma.
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Application to numerical integration

We choose now a random variable X ∼ U([0, 1]d) and consider a
measurable mapping f : Rd → R. Then, for a sequence of mutually
independent random variables Xi ∼ U([0, 1]d), the corresponding
random variables Yi = f (Xi) become independent scalar-valued
random variables that are identically distributed and

E[ f (X)] =
∫
[0,1]d

f (x)ρX(x) dx =
∫

Rd
f (x)1x∈[0,1]d dx

If for example for, f (x) = 1x∈[a,b]d for some [a, b]d ⊆ [0, 1]d, then we
get

P
(

X ∈ [a, b]d
)
= E

[
1[a,b]d

]
=
∫
[0,1]d

1[a,b]d(x) dx = (b− a)d,

which confirms the intuitive idea of a “uniform distribution”. And
the Monte Carlo approximation

IM( f ) =
1
M

M

∑
m=1

f (Xm)

will give an approximation of the integral I( f ) =
∫
[0,1]d f (x) dx, and

the error in this approximation scales as M−1/2.
Summing up the two main results in the context of Monte Carlo

integration:

EM( f ) ≤

(
maxx∈[0,1]d { f (x)} −minx∈[0,1]d { f (x)}

)
2
√

M
,

and

P

(∣∣∣IM( f )−
∫
[0,1]d

f (x) dx
∣∣∣ ≥ ε

)

≤

(
maxx∈[0,1]d { f (x)} −minx∈[0,1]d { f (x)}

)2

4ε2M
.

Note carefully that the root mean square error scales as M−1/2,
regardless of the dimension d. This is in stark contrast to more
standard quadrature methods, whose error scales as M−k/d, where
k is the accuracy of the quadrature method and M is the number of
quadrature points. If d is very large, then the error will converge to
zero very slowly – this is the curse of dimensionality.

Unlike classic quadrature methods,
the Monte Carlo method does not suffer from the curse

of dimensionality and its order of convergence is not
sensitive to the regularity of the integrand.

Example. For the midpoint method using stepsize h = M−1/d and
assuming that M1/d is an integer, the integral of f is approximated
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by

IMP
M ( f ) =

M1/d

∑
i1=1
· · ·

M1/d

∑
id=1

f
(

i1(h+ 1/2), i2(h+ 1/2), . . . , id(h+ 1/2)
)

hd .

One can show that if f ∈ C2([0, 1]d), then∣∣∣∣IMP
M ( f )−

∫
[0,1]d

f (x)dx
∣∣∣∣ ≤ Ch2 = O(M−2/d).

While measured for instance in root mean square error, the Monte
Carlo arguably converges with a higher order than the midpoint
method whenever d > 4, as it holds that√√√√E

[∣∣∣∣IM( f )−
∫
[0,1]d

f (x)dx
∣∣∣∣2
]
= O(M−1/2).

The price one pays for lifting the curse of dimensionality is that
one only gets probabilistic error estimates and these can also be ex-
pensive. Using the error estimate (2), if we wish to be 99% sure that

we have an error
∣∣∣IM( f )−

∫
[0,1]d f (x) dx

∣∣∣ less than 0.005 (correct to
two decimal places), we can choose the number of samples M such
that

(max { f } −min { f })2

4(0.005)2M
≤ 0.01,

that is
M ≥ 1 000 000 (max { f } −min { f })2 .
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