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1 Theoretical results
Here is a short summary of topics covered in lectures that are not covered in Süli and
Mayers. We use the same notation and terminology as in that textbook. We first
summarize the main existence and uniqueness result for IVP and convergence of one-
step methods given in the lectures (as they are not identical to the corresponding
ones in SM). Section 2 describes Runge–Kutta methods and the Butcher tableau
representation, and Section 3 treats A-stability for one-step methods.
Main existence and uniqueness result (proof in lecture):

Theorem 1.1 (Existence and uniqueness) Consider the IVP

y′ = f(t,y) t ∈ [a,b], y(a) = y0 ∈ Rd (1.1)

with f Lipschitz in y. Then there exists a unique solution to (1.1) with y ∈
C1([a,b],Rd).

Theorem 1.2 (Convergence of one-step method) Consider the IVP (1.1) with f
Lipschitz in y. Let yn+1 = yn +hΦ(tn,yn;h) with h = (b− a)/N and tn = a+nh,
be an explicit one-step method with order of accuracy p≥ 1 (for the particular IVP)
and that is Lipschitz continuous in y, meaning that

‖Φ(t,y;h)−Φ(t,y;h)‖ ≤ LΦ‖x−y‖ for all x,y ∈ Rd, t ∈ [a,b] & h < h0.

for some Lipschitz constant LΦ > 0 and h0 > 0.
Then it holds that

max
n=0,1,...,N

‖yn−y(tn)‖= O(hp).

2 Runge–Kutta methods
The explicit Runge-Kutta methods is a family of methods that

• do not require knowledge of partial derivatives of f to be used,

• can all be represented compactly in a Butcher tableau,

• has common features among subsets which often are easy to study and classify.

Definition 2.1 (Expicit s-stage Runge-Kutta method) For some natural number
s≥ 1, consider b,c ∈ Rs and a strictly lower triangular matrix

A=


0 · · · · · · 0
a2,1

. . . ...
... . . . . . . ...
as,1 · · · as,s−1 0

 ∈ Rs×s.

A stepping rule on the form

Φ(t,y;h) =
s∑
i=1

biki(t,y;h), where ki = f
(
t+ cih, y+h

i−1∑
j=1

aijkj

)
i= 1, . . . , s
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is called an explicit s-stage Runge-Kutta method.
The method is described by the weights b= (b1, . . . , bs), the nodes c= (c1, . . . , cs) and
the coefficient matrix A, and it is common to arrange the information in a so-called
Butcher tableau:

c1
... a2,1
... ... . . .
cs as,1 · · · as,s−1

b1 · · · · · · bs

= c A

bT

Remark 2.2

• The method is explicit because each equation for ki is explicit. This is because
the sum is from j = 0 and only up to i− 1, which relates to the coefficient
matrix A being strictly lower triangular.

• A more general way of expressing the system of equations for ki, covering both
explicit and implicit RK methods, is

ki = f
(
t+ cih, y+h

s∑
j=1

aijkj
)

i= 1, . . . , s.

This leads to an implicit system of equations for k1, . . . ,ks when A is not strictly
lower triangular.

Example 2.3 (Explicit Euler) The 1-stage method

c A

bT
= 0 0

1

has the stepping rule

Φ(t,y;h) =
s∑
i=1

bkki = k1,

with
k1(t,y;h) = f(t+ c1h,y+

0∑
j=1

a1jkj) = f(t,y).

This is the explicit Euler method

yj+1 = yj +hΦ(tj ,yj ;h) = yj +hf(tj ,yj).

Example 2.4 (Explicit midpoint method) The 2-stage method

c A

bT
=

0 0
1/2 1/2 0

0 1
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has the stepping rule

Φ(t,y;h) =
s∑
i=1

bkki = k2,

with
k1 = f(t+ c1h,y) = f(t,y)

and

k2(t,y;h) = f(t+c2h,y+h
2−1∑
j=1

a2jkj) = f(t+c2h,y+ha21k1) = f(t+ h

2 ,y+ h

2f(t,y)).

This is the explicit midpoint/modfied Euler method:

yj+1 = yj +hf(t+ h

2 ,yj + h

2f(tj ,yj)).

Example 2.5 The classic 4-stage RK method is given by

c A

bT
=

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 2/6 2/6 1/6

We obtain (recalling that ki = f
(
t+ cih, y+h

∑i−1
j=1aijkj

)
)

k1(t,y;h) = f(t+ c1h,y) = f(t,h)

k2(t,y;h) = f(t+ c2h,y+ha21k1) = f
(
t+ h

2 ,y+ h

2f(t,h)
)

k3(t,y;h) = f
(
t+ c3h,y+h(a31k1 +a32k2)

)
= f

(
t+ h

2 ,y+ h

2k2
)

k4(t,y;h) = f
(
t+ c4h,y+ha43k3

)
= f

(
t+h,y+hk3

)
,

the stepping rule

Φ(t,y;h) =
s∑
i=1

biki = k1 + 2k2 + 2k3 +k4
6 ,

and the so-called RK4 method (see also Figure 2.1)

yj+1 = yj + hj
6

(
k1 + 2k2 + 2k3 +k4

)
(tj ,yj ;h).
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Figure 2.1: One step of the RK4 method of the ODE y′ = y+ t3. See that ki
approximate y′, in the sense that that ki(tn,yn;h) ≈ y′(tn + cih) for i = 1, . . . , s.
(Source: Wikipedia)

2.1 Coefficient constraints and convergence properties
We recall that a one-step method is consistent if limh→0 Φ(t,y;h) = f(t,y).
An s−stage explicit RK-method:

• is consistent iff ∑s
i=1 bi = 1

• has order of accuracy p≤ s and

– p≥ 1 if ∑s
i=1 bi = 1

– p≥ 2 if additionally ci =∑i−1
j=1aij for i= 1, . . . , s and ∑s

i=1 bici = 1/2
– p≥ 3 if additionally further conditions hold, etc.

2.2 Implicit Runge–Kutta methods
An s-stage RK method with the tableau (2.1)

c A

bT
=

c1 a1,1 · · · a1,s
... ... ...
cs as,1 · · · as,s−1

b1 · · · bs

(2.1)

is called implicit if ai,j 6= 0 for at least one component with j ≥ i.
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Recall that an s-stage RK method with Butcher tableau (2.1) has the stepping rule

yn+1 = yn+hΦ(tn,yn,yn+1;h)

with
Φ(tn,yn,yn+1;h) =

s∑
i=1

biki,

and system of equations

ki = f
(
tn+ cih, yn+h

s∑
j=1

aijkj

)
i= 1, . . . , s,

Solution approach: introduce F : Rs→ Rs where

Fi(k1, . . . ,ks) = ki−f
(
tn+ cih, yn+h

s∑
j=1

aijkj

)
i= 1, . . . , s

and solve F (k1, . . . ,ks) = 0 using e.g. Newton’s method (for every timestep).

2.3 Implicit vs explicit
• Implicit methods tend to be more stable than explicit methods.

• So one can often solve problems robustly with larger h > 0 with implicit meth-
ods than explicit.

• Implicit methods are more suitable for stiff problems, involving dynamics on
different timescales, like

y′ =
(
−1 1/100
0 −100

)
y,

where, y2(t) = e−100ty2(0) may vary on a faster timescale than

y1(t) = e−ty1(0) + “small contribution from”y2.

• A drawback is that implicit methods can be more computationally costly than
explicit methods, as one needs to solve implicit equation for yn+1 every itera-
tion.

3 Long-time stability
For studying the long-time stability properties of numerical methods we introduce
the test equation

y′ = λy︸︷︷︸
f(y)

, for t≥ 0 and some λ < 0, (3.1)
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The exact solution
y(t) = y0e

λt,

is asymptotically decaying in absolute value, and if we consider the solution per-
turbed initial data yε(0) = y(0) + ε, we observe a similar asymptotic decay in the
perturbation error:

|y(t)−yε(t)| ≤ eλt|y(0)−yε(0)|.
We would like the observed decay to carry over to numerical methods solving the
test equation.

Explicit Euler method

For
yj+1 = yj +hf(yj) = (1 +λh)yj = (1 +λh)j+1y0, (3.2)

we observe that

|yj+1|< |yj | ⇐⇒ −1< 1 +λh < 1 ⇐⇒ h <
2
|λ|
.

Conclusion: the decay of the solution is determined by the stability function

R(λh) = 1 +λh

and

• For h > 2/|λ|, we have that R(λh)> 1 and the method is unstable.

• For h∈ (1/|λ|,2/|λ|), we have that −1<R(λh)< 0 so the solution decays, but
it will have unnatural oscillations due to R(λh) being negative.

• For h < 1/|λ|, we have that 0 < R(λh) < 1. The numerical solution decays in
a non-oscillatory manner, consistent with the exact solution.

See Figure 3.1 for a numerical verification of these observations.
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Figure 3.1: Explicit Euler solutions of the test equation (3.1) with λ = −10 and
y(0) = 1. Top: unstable setting with h> 2/10,middle: stable but oscillatory solution
with h ∈ (1/10,2/10) and bottom: “reasonable” non-oscillatory solution with h <
1/10.

Implicit Euler

The method

yj+1 = yj +hf(yj+1) = yj +hλyj+1

=⇒ yj+1 = yj
1−λh = (1−λh)−(j+1)y0,

(3.3)

implies that
|yj+1|< |yj | ⇐⇒

1
1−λh < 1.

This holds for any h > 0 since λ < 0, so unlike explicit Euler, there is no stepsize
constraint for the implicit Euler. A numerical comparison of explicit- and implicit
Euler is given in Figures 3.1 and 3.2.
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Figure 3.2: Implicit Euler solutions of the test equation (3.1) with λ = −10 and
y(0) = 1.

A-Stability
Dahlquist’s test equation is generally of the form

y′ = λy, for λ ∈ C. (3.4)

Definition 3.1 (Stability function) For a one-step method applied to (3.4) the asso-
ciated stability function R : C→ C is for z = λh defined as the function satisfying
by

yj+1 =R(z)yj
For explicit Euler, for instance,

yj+1 = (1 +λh)yj =⇒ R(z) = 1 + z.

Theorem 3.2 For all consistent one-step methods that we have considered (RK and
Taylor based), the stability function can be written as rational function. That is

R(z) = P (z)
Q(z) ,

where P : C→ C and Q : C→ C are polynomials that satisfy

(i) Q(z) = 1 for explicit methods,

(ii) R(0) = 1 (and we set P (0) =Q(0) = 1),



3 LONG-TIME STABILITY 9

Definition 3.3 (Region of absolute stability and A-Stability) A one-step method
with stability function R has region of absolute stability

S = {z ∈ C | |R(z)|< 1},

and the method is called A-stable (absolutely stable) if it holds that S ⊃C− = {z ∈
C | Re(z)< 0}

Extension to d > 1: When the numerical method is applied to a linear system of
ODE y′ = Ay using stepsize h > 0, it is said to be stable if

λh ∈ S for all eigenvalues λ ∈ σ(A).

Example 3.4 (Explicit Euler)

yj+1 = (1 +λh)︸ ︷︷ ︸
R(λh)

yj =⇒ R(z) = 1 + z

with region of absolute stability

S = {z ∈ C | |1 + z|< 1}

-2 -1 0

-1.5

-1

-0.5

0

0.5

1

1.5
Explicit Euler

Figure 3.3: The region of absolute stability of the explicit Euler method is the
interior of the red curve.

Example 3.5 (Implicit Euler) From (3.3) we recall that

yj+1 = 1
1−λh︸ ︷︷ ︸
R(λh)

yj , which implies that R(z) = 1
1− z

with region of absolute stability

S = {z ∈ C | 1
|1− z| ≤ 1}= {z ∈ C | |1− z|> 1}
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Figure 3.4: The region of absolute stability of the implicit Euler method is the
exterior of the red curve.

Example 3.6 (Explicit Runge-Kutta 2, 3, and 4) The RK2 method is given by

yj+1 = yj +hf
(
yj + h

2f(yj)
)

=
(

1 +λh+ (λh)2

2

)
yj

which implies that

RRK2(z) = 1 + z+ z2

2 .

By similar computations, one can show that

RRK3(z) = 1 + z+ z2

2 + z3

3! , and RRK4(z) = 1 + z+ z2

2 + z3

3! + z4

4! .

(RK2 here denoting any 2−stage explicit RK method with order of accuracy 2, and
similar for RK3 and RK4.)
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Figure 3.5: The region of absolute stability of RK 2,3 and 4 is the interior of the
respective curves.

Example 3.7 (Explicit Euler on a system of ODE) For the linear system of ODE
with x ∈ R2

d

dt

(
y1
y2

)
=
(
−2 1
−1 −2

)
︸ ︷︷ ︸

=A

(
y1
y2

)
, (3.5)

where A has complex-valued eigenvalues: λ1 = −2− i and λ2 = −2 + i. By Defini-
ton 3.3(ii), the explicit Euler method is stable for all h > 0 such that

|1 +λ1h|< 1 and |1 +λ2h|< 1. (3.6)

Since
|1 +λ1h|2 = |1 +λ2h|2 = (1−2h)2 +h2 = 1−4h+ 5h2

the condition (3.6) holds if and only if

−4h+ 5h2 < 0 ⇐⇒ h < 4/5.
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Figure 3.6: The admissible stepsizes for explicit Euler solving (3.5) are the h values
along the blue and green lines which intersect with/are inside the method’s red-
circled region of absolute stability. That is, h < 4/5.

Exercise: Why cannot a consistent explicit Runge-Kutta method be A-stable?
(Hint: its stability function R(z) is a polynomial of degree ≥ 1 with R(0) = 1.)
Exercise: Describe the set of all 2-stage RK methods (b,c,A) with a12 = 0 that have
order of accuracy 2 and are A-stable.
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