Numerical methods for eigenvalues and eigenvectors part I, MAT 3110 UiO

Håkon Hoel

Fall 2023

Table of Contents

(1) Introduction
(2) Gershgorin's theorems
(3) Power iteration
(4) Inverse iteration/inverse power method

Big question I

How does one compute eigenvalues and eigenvectors of a matrix $A \in \mathbb{R}^{n \times n}$?

A natural idea:

(1) For $\lambda \in \mathbb{R}$, compute the characteristic polynomial $p(\lambda)=\operatorname{det}(A-\lambda I)$
(2) Find an eigenvalue of A by solving $p(\lambda)=0$ using some iteration method
(3) Having obtained a numerical solution $\bar{\lambda}=\lambda_{K}$, compute eigenvector $\bar{x} \in \mathbb{R}_{*}^{n}$ (if you also seek eigenvector) by solving $(A-\bar{\lambda} /) \bar{x}=0$

Big question II

How does one compute eigenvalues and eigenvectors of a matrix $A \in \mathbb{R}^{n \times n}$?

A natural idea:

(1) For $\lambda \in \mathbb{R}$, compute the characteristic polynomial $p(\lambda)=\operatorname{det}(A-\lambda I)$
(2) Find an eigenvalue of A by solving $p(\lambda)=0$ using some iteration method
(3) Having obtained a numerical solution $\bar{\lambda}=\lambda_{K}$, compute eigenvector $\bar{x} \in \mathbb{R}_{*}^{n}$ (if you also seek eigenvector) by solving $(A-\bar{\lambda} I) \bar{x}=0$

But it is a bad idea because every step in your iteration method, for example,

$$
\lambda_{k+1}=\lambda_{k}-p\left(\lambda_{k}\right)\left(\frac{\lambda_{k}-\lambda_{k-1}}{p\left(\lambda_{k}\right)-p\left(\lambda_{k-1}\right)}\right) \quad k=1,2, \ldots
$$

requires that you compute the determinant $p\left(\lambda_{k}\right)=\operatorname{det}\left(A-\lambda_{k} I\right)$. This costs $\mathcal{O}\left(n^{3}\right)$ operations per iteration.

And eigenvalue λ may be complex-valued, complicating things ...

Estimates of eigenvalues

Notation: For $A \in \mathbb{R}^{n \times n}$, let $\sigma(A)=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ denote its set of eigenvalues.

Theorem (Gershgorin's circle theorem)

Consider a matrix $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ and associate its i-th row to the off-diagonal radius
$r_{i}=\sum_{j \neq i}\left|a_{i j}\right|, \quad$ and the i-th Gershgorin disc $\quad D_{i}:=\left\{z \in \mathbb{C}| | z-a_{i i} \mid \leq r_{i}\right\}$.
Then each eigenvalue lies inside some Gershgorin disc, $\lambda \in D_{i}$ for some $1 \leq i \leq n$, and thus also $\sigma(A) \subset \cup_{i=1}^{n} D_{i}$.

Theorem (Gershgorin's circle theorem (abbrv.))

For any $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$, any eigv. $\lambda \in D_{i}$ for some $i=1,2, \ldots, n$.

Proof.

Let (λ, v) be an arbitrary eigenpair of A. Set $\tilde{v}= \pm v /\|v\|_{\infty}$ with the sign \pm chosen so that $\tilde{v}_{i}=1$ for some $i \in\{1, \ldots, n\}$. Then

$$
(A \tilde{v})_{i}=(\lambda \tilde{v})_{i}=\lambda \quad \text { and also } \quad(A \tilde{v})_{i}=a_{i i}+\sum_{j \neq i} a_{i j} \tilde{v}_{j} .
$$

We conclude that

$$
\left|\lambda-a_{i i}\right| \leq\left|\sum_{j \neq i} a_{i j} \tilde{v}_{j}\right| \leq \sum_{j \neq i}\left|a_{i j}\right| \underbrace{\left|\tilde{v}_{j}\right|}_{\leq 1} \leq \sum_{j \neq i}\left|a_{i j}\right|=r_{i} .
$$

Example

$$
A=\left[\begin{array}{cccc}
1 & 0 & 5 & 0 \\
1 & 3 & 0 & 0 \\
0 & 1 & 5 & 1 \\
0 & 1 & 0 & 10
\end{array}\right] \quad \text { with (approx.) } \quad \sigma(A)=\{1.80 \pm 0.61 i, 5.38,10.02\}
$$

$$
D_{1}=B((1,0), 5), \quad D_{2}=B((3,0), 1), \quad D_{3}=B((5,0), 2), \quad D_{4}=B((10,0), 1) .
$$

iy

Observations

Remark

a) Note: The theorem does not say that each Gershgorin disc contains an eigenvalue. Some discs may contain many, others none.
b) If all the Gershgorin discs are disjoint, then one can show that each disc D_{i} must contain one and only one eigenvalue.

Theorem (Extension of Gershgorin's thm)

If the Gershgorin discs of a matrix $A \in \mathbb{R}^{n \times n}$ for some ordering satisfies that $B_{1}=\cup_{i=1}^{k} D_{i}$ is disjoint from $B_{2}=\cup_{i=k+1}^{n} D_{i}$ (meaning $B_{1} \cap B_{2}=\emptyset$), then k eigenvalues belong to B_{1} and $n-k$ eigenvalues belong to B_{2}.

And if all discs are disjoint, then each disc contains one and only one eigenvalue.

Applications of Gershgorin's

A matrix $A \in \mathbb{R}^{n \times n}$ is said to be strictly diagonally dominant if

$$
\left|a_{i i}\right|>\underbrace{\sum_{j \neq i}\left|a_{i j}\right|}_{=r_{i}} \quad \forall i \in\{1, \ldots, n\} .
$$

Theorem (Diagonal dominance)

Every strictly diagonally dominant matrix is non-singular.

Applications of Gershgorin's II

Theorem (Diagonal dominance)

Every strictly diagonally dominant matrix is non-singular.

Proof.

Every eigenvalue of A lies inside the union of Gershgorin discs, meaning

$$
\sigma(A) \subset \cup_{i=1}^{n} D_{i}
$$

The disc $D_{i}=B\left(\left(a_{i i}, 0\right), r_{i}\right)$ does not contain point $z=(0,0) \in \mathbb{C}$ since

$$
\left|a_{i i}-0\right|=\left|a_{i i}\right|
$$

$$
r_{i}
$$

strict diagonal dominance
Holds for all $i \in\{1, \ldots, n\} \Longrightarrow 0 \notin \cup_{i=1}^{n} D_{i} \Longrightarrow 0 \notin \sigma(A)$.

$$
\text { And } \quad \operatorname{det}(A)=\prod_{\lambda \in \sigma(A)} \lambda \neq 0
$$

Example

$$
A=\left[\begin{array}{ccc}
2 & 1 & -1 / 2 \\
-1 & 3 & 1 \\
0 & 1 & -2
\end{array}\right]
$$

is non-singular as

$$
\begin{aligned}
& \left|a_{11}\right|=2>1+|-1 / 2| \\
& \left|a_{22}\right|=3>|-1|+1
\end{aligned}
$$

$$
\left|a_{33}\right|=|-2|>1+0
$$

Similarity transformations

If $T \in \mathbb{R}^{n \times n}$ is invertible, then we recall that $T^{-1} A T$ is called a similarity transformation of A.

Note: Similarity transformations preserve the matrix spectrum $\sigma\left(T^{-1} A T\right)=\sigma(A)$, since the characteristic polynomial is preserved:

$$
\begin{aligned}
p_{T^{-1} A T}(\lambda) & =\operatorname{det}\left(T^{-1} A T-\lambda I\right) \\
& =\operatorname{det}\left(T^{-1}(A-\lambda I) T\right) \\
& =\underbrace{\operatorname{det}\left(T^{-1}\right) \operatorname{det}(T)}_{=1} \operatorname{det}(A-\lambda I) \\
& =p_{A}(\lambda)
\end{aligned}
$$

Gershgorin cobined with similarity transformations

Core idea: Eigenvalues must be contained inside Gershgorin discs of A, but also inside of Gershgorin discs of $\tilde{A}=T^{-1} A T$. Information of set of discs from both matrices can give more information.

Example

The matrix

$$
A=\left[\begin{array}{ccc}
10 & 2 & 3 \\
-1 & 0 & 2 \\
1 & -1 & 1
\end{array}\right]
$$

has $\sigma(A)=\{10.226,0.387 \pm 2.216 i\}$ (that we assume unknown and try to estimate).
By Gershgorin's theorem,

$$
D_{1}=B((10,0), 5), \quad D_{2}=D((0,0), 3), \quad D_{3}=D((1,0), 2)
$$

Since D_{1} does not intersect with $D_{2} \cup D_{3}, D_{1}$ must contain one eigenvalue (and must thus be real-valued).

Gershgorin cobined with similarity transformations II

Example

$$
\operatorname{Im}(z)
$$

To improve estimate of λ_{1}, consider for some $\alpha>0$,

$$
\tilde{A}=T^{-1} A T \quad \text { with } \quad T=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & \alpha & 0 \\
0 & 0 & \alpha
\end{array}\right] \Longrightarrow \tilde{A}=\left[\begin{array}{ccc}
10 & 2 \alpha & 3 \alpha \\
-1 / \alpha & 0 & 2 \\
1 / \alpha & -1 & 1
\end{array}\right]
$$

Gershgorin cobined with similarity transformations II

Example

Since $\sigma(\tilde{A})=\sigma(A)$, we apply Gershgorin's theorem on \tilde{A} to obtain the discs
$\tilde{D}_{1}=B((10,0), 5 \alpha), \quad \tilde{D}_{2}=B((0,0), 2+1 / \alpha), \quad \tilde{D}_{3}=B((1,0), 1+1 / \alpha)$.
Choose $\alpha>0$ so small that

$$
\tilde{D}_{1} \cap\left(\tilde{D}_{2} \cup \tilde{D}_{3}\right)=\emptyset \Longrightarrow 10-5 \alpha>2+1 / \alpha
$$

- One valid choice: $\alpha=1 / 7$
- This yields $\lambda_{1} \in \tilde{D}_{1}(\alpha=1 / 7)=B((10,0), 5 / 7)$
- and tells us that $\lambda_{1} \in[10-5 / 7,10+5 / 7]$

Example

$$
\operatorname{Im}(z)
$$

Figure: Gershgorin discs $\tilde{D}_{1}, \tilde{D}_{2}$ and \tilde{D}_{3} of \tilde{A} for $\alpha=1 / 7$ in blue, and black Gershgorin discs for D_{1}, D_{2} and D_{3} for $\tilde{A}=A$ with $\alpha=1$.

Power iteration I

Is an algorithm that computes the dominating (largest in absolute value) eigenvalue of a matrix.
Algorithm 1: Power iteration
Data: $A \in \mathbb{R}^{n \times n}$
Choose a start vector $x^{(0)}=x_{0} \in \mathbb{R}^{n} \backslash\{0\}$.
for $k=1,2, \ldots$ do

$$
\begin{equation*}
x^{(k)} \leftarrow A x^{(k-1)} \tag{1}
\end{equation*}
$$

Compute the normalized vector

$$
z^{(k)} \leftarrow \frac{x^{(k)}}{\left\|x^{(k)}\right\|_{2}}
$$

and the so-called Rayleigh quotient

$$
\lambda^{(k)} \leftarrow\left(z^{(k)}\right)^{T} A z^{(k)} .
$$

Power iteration II

Remark

Remarks:

a) Let λ_{1} denote the dominating eigenvalue. Then under some assumptions,

$$
\lim _{k \rightarrow \infty} \lambda^{(k)}=\lambda_{1}
$$

and $z^{(k)}$ will asymptotically belong to eigenspace of λ_{1}.
b) Normally, one replaces the step (1) by

$$
z^{(k+1)}=\frac{A z^{(k)}}{\left\|A z^{(k)}\right\|_{2}},
$$

to avoid the need for storing the $\left(x^{(k)}\right)$ sequence.

Power iteration III

Example

Consider

$$
A=\left[\begin{array}{ll}
7 / 2 & 5 \\
5 / 2 & 1
\end{array}\right] \quad \text { with } \quad \sigma(A)=\{6,-3 / 2\} \quad \text { and } v_{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Start vector $\quad x^{(0)}=\left[\begin{array}{l}1 \\ 0\end{array}\right] \quad$ yields $\quad x^{(1)}=A x^{(0)}=\frac{1}{2}\left[\begin{array}{l}7 \\ 5\end{array}\right]$,

$$
x^{(2)}=A x^{(1)}=\frac{1}{4}\left[\begin{array}{l}
99 \\
45
\end{array}\right], \quad x^{(3)}=\frac{1}{8}\left[\begin{array}{c}
1143 \\
585
\end{array}\right] \ldots
$$

and

$$
\lambda^{(1)}=\left(z^{(1)}\right)^{T} A z^{(1)}=6.2027, \quad \lambda^{(2)}=5.8973, \ldots, \quad \lambda^{(8)}=6.0001
$$

Limits: $\quad \lambda^{(k)} \rightarrow \lambda_{1}$ and $z^{(k)} \rightarrow v_{1}$ as $k \rightarrow \infty$.

Theorem (Convergence of the power iteration)

Let $A \in \mathbb{R}^{n \times n}$ be symmetric with real-valued eigenvalues
$\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{R}$ such that
$\lambda_{1}=\lambda_{2}=\ldots=\lambda_{r}, \quad$ and $\quad\left|\lambda_{r}\right|>\left|\lambda_{r+1}\right|>\ldots>\left|\lambda_{n}\right| \quad$ for some and corresponding orthonormal eigenvectors v_{1}, \ldots, v_{n}. Let further

$$
x^{(0)}=\sum_{j=1}^{n} \alpha_{j} v_{j} \quad \text { with } \sum_{j=1}^{r}\left|\alpha_{j}\right| \neq 0
$$

Then, the normalized power iteration sequence $z^{(k)}:=x^{(k)} /\left\|x^{(k)}\right\|$ satisfies

$$
A z^{(k)}=\lambda_{1} z^{(k)}+\mathcal{O}\left(q^{k}\right) \quad \text { where } \quad q:=\frac{\left|\lambda_{r+1}\right|}{\left|\lambda_{1}\right|},
$$

and

$$
\lambda^{(k)}=\left(z^{(k)}\right)^{T} A z^{(k)}=\lambda_{1}+\mathcal{O}\left(q^{2 k}\right) .
$$

Core proof idea

If $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{n}\right|$ and

$$
x^{(0)}=\sum_{j=1}^{n} \alpha_{j} v_{j}, \quad \text { with } \quad \alpha_{1}>0
$$

then for $k \gg 1$

$$
A^{k} x^{(0)}=\lambda_{1}^{k} \sum_{j=1}^{n} \alpha_{j}\left(\lambda_{j} / \lambda_{1}\right)^{k} v_{j}=\lambda_{1}^{k} \alpha_{1} v_{1}+\sum_{j=2}^{n} \alpha_{j} \underbrace{\left(\lambda_{j} / \lambda_{1}\right)^{k}}_{\mathcal{O}\left(q^{k}\right)} v_{j}
$$

and one can show that

$$
z^{(k)}=\frac{A^{k} x^{(0)}}{\left\|A^{k} x^{(0)}\right\|_{2}}=\frac{\lambda_{1}^{k} v_{1}}{\left|\lambda_{1}\right|^{k}\left|\alpha_{1}\right|}+\mathcal{O}\left(q^{k}\right)= \pm v_{1}+\mathcal{O}\left(q^{k}\right)
$$

leading also to $\lambda^{(k)}=z^{(k)} A z^{(k)}=\lambda_{1}+\mathcal{O}\left(q^{2 k}\right)$.

Remark

a) The smaller the ratio $q=\frac{\left|\lambda_{r+1}\right|}{\left|\lambda_{1}\right|}$, the faster the convergence.
b) The assumption $\sum_{j=1}^{r}\left|\alpha_{j}\right| \neq 0$ for $x^{(0)}$ is difficult to verify, as one typically do not know the eigenvectors of A.
Good strategy: draw $x^{(0)} \in \mathbb{R}_{*}^{n}$ randomly.
c) The normalized vector

$$
z^{(k)}=\operatorname{sgn}\left(\lambda_{1}^{k}\right) \frac{\tilde{v}_{1}}{\left\|\tilde{v}_{1}\right\|}+\mathcal{O}\left(q^{k}\right)
$$

will converge as $k \rightarrow \infty$ iff $\lambda_{1} \geq 0$. Otherwise, it may for instance oscillate like $z^{(k)} \approx(-1)^{k} v_{1}$.

Example (Sensitivity with respect to the start vector)

Consider the matrix in the previous example. How sensitive is the power iteration to the start vector $x^{(0)}$?
Experiment: draw the components in $x^{(0)}$ as independent $U[0,1]$ random variables, and compute

$$
z^{(10)}=x^{(10)} /\left\|x^{(10)}\right\|_{2}
$$

We repeat the experiment 5 times. Matlab code:

```
\(x 0=\) rand \((2,5) \% 5\) columns with \(x 0\) vectors
\(\mathrm{x} 10=\mathrm{A}^{\wedge}(10) * \mathrm{x} 0\);
z =zeros \((2,5)\);
for \(i=1: 5\)
    \(z(:, i)=x 10(:, i) / n o r m(x 10(:, i))\);
end
```


Example (Output runs)

This yields the output
$x 0=$

0.7513	0.5060	0.8909	0.5472	0.1493
0.2551	0.6991	0.9593	0.1386	0.2575

z =

0.8944	0.8944	0.8944	0.8944	0.8944
0.4472	0.4472	0.4472	0.4472	0.4472

Definition (Rayleigh quotient)

For a symmetric $A \in \mathbb{R}^{n \times n}$, the Rayleigh quotient for a nonzero vector $x \in \mathbb{R}^{n}$ is defined by

$$
R(x):=\frac{x^{\top} A x}{x^{\top} x}
$$

Theorem

Let $A \in \mathbb{R}_{\text {sym }}^{n \times n}$ with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$. Then it holds that

$$
\lambda_{1}=\sup _{x \in \mathbb{R}_{*}^{n}} R(x) \quad \lambda_{n}=\inf _{x \in \mathbb{R}_{*}^{n}} R(x)
$$

Proof.

Let $\left\{\left(\lambda_{i}, v_{i}\right)\right\}_{i=1}^{n}$ denote the eigenpairs of A, with v_{1}, \ldots, v_{n} orthonormal. Any $x \in \mathbb{R}^{n}$ can be written

$$
x=\sum_{j=1}^{n} \alpha_{j} v_{j}
$$

and

$$
R(x)=\frac{x^{T} A x}{x^{T} x}=\frac{\sum_{j, k} \alpha_{j} \alpha_{k} v_{k}^{T} A v_{j}}{\sum_{j, k} \alpha_{j} \alpha_{k} v_{k}^{T} v_{j}}=\frac{\sum_{j=1}^{n} \alpha_{j}^{2} \lambda_{j}}{\sum_{j, k} \alpha_{j}^{2}} \leq \frac{\sum_{j=1}^{n} \alpha_{j}^{2} \lambda_{1}}{\sum_{j} \alpha_{j}^{2}}=\lambda_{1}
$$

By choosing $x=v_{1}$, we obtain $R(x)=\lambda_{1}$.
The lower bound $R(x) \geq \lambda_{n}$ and $R\left(v_{n}\right)=\lambda_{n}$ is proved similarly.

Exercise

Show that
a) For any eigenvector v_{j}, it holds that

$$
R\left(v_{j}\right)=\lambda_{j}
$$

b) For the approximation of an eigenvector $\tilde{v}=v_{j}+\Delta v$ where $\Delta v=\sum_{i=1}^{n} \varepsilon_{i} v_{i}$, it holds that (exercise)

$$
\left|R(\tilde{v})-\lambda_{j}\right| \leq 2(n-1)\|A\|_{2}\|\Delta v\|_{2}^{2} .
$$

Inverse iteration I

If A has eigenvalues $\left\{\lambda_{i}\right\}_{i=1}^{n}$ with

$$
\left|\lambda_{n}\right|<\left|\lambda_{n-1}\right| \leq \ldots \leq \lambda_{1},
$$

then A^{-1} has eigenvalues $\left\{\lambda_{i}^{-1}\right\}_{i=1}^{n}$ with

$$
\left|\lambda_{n}^{-1}\right|>\left|\lambda_{n-1}^{-1}\right|>\ldots
$$

Motivation:

$$
A v_{k}=\lambda_{k} v_{k} \Longrightarrow \lambda_{k}^{-1} v_{k}=A^{-1} v_{k}
$$

Inverse iteration II

Approximate smallest eigenpair $\left(\lambda_{n}, v_{n}\right)$ of A, by applying inverse power iteration

$$
A x^{(k+1)}=x^{(k)} \quad k=0,1, \ldots
$$

Note: this is power iteration for A^{-1} with largest eigenpair $\left(\lambda_{n}^{-1}, v_{n}\right)$.
Know from convergence of power iteration that $x^{(k)} /\left\|x^{(k)}\right\|_{2} \approx \pm v_{n}$ for large k, and therfore also that

$$
\lambda^{(k)}=R\left(x^{(k)}\right) \rightarrow \lambda_{n} \quad \text { as } k \rightarrow \infty .
$$

Example

Consider again

$$
A=\left[\begin{array}{ll}
7 / 2 & 5 \\
5 / 2 & 1
\end{array}\right] \quad \text { with } \quad \sigma(A)=\{6,-3 / 2\} \quad \text { and } \quad v_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

Inverse iterations applied to the start vector $\quad x^{(0)}=\left[\begin{array}{l}1 \\ 0\end{array}\right] \quad$ yields

```
x = [1; 0]; % startvector
z = zeros(2,7);
for i = 1:7
    x = A\x;
    z(:,i) = x/norm(x);
end
z
    -0.3714 
```


Inverse iteration with shift

Inverse iteration (and also power iteration) may also compute the eigenvalue of A closest to a $\mu \in \mathbb{R}$ through:
(1) Apply inverse iterations to the shifted matrix $(A-\mu I)$:

$$
(A-\mu l) x^{(k+1)}=x^{(k)} \quad \text { for } k=0,1, \ldots
$$

(2) The dominant eigenvalue of $(A-\mu I)^{-1}$ equals

$$
\hat{\lambda}^{-1}=\left(\lambda_{i}-\mu\right)^{-1}
$$

where $\lambda_{i}=\arg \min _{\lambda \in \sigma(A)}|\lambda-\mu|=\lambda_{\text {closest to } \mu}$.
By same argument as before

$$
\frac{x^{(k)}}{\left\|x^{(k)}\right\|_{2}} \approx \pm v_{i} \quad \text { for } \quad k \gg 1, \quad \text { and } \quad R\left(x^{(k)}\right) \rightarrow \lambda_{i}
$$

Summary

- Gershgorin's theorem may be used in combination with similarity transformations to improve eigenvalue estimates.
- Power iteration and inverse iteration are methods for computing eigenpairs of matrices, respectively for largest and smallest eigenvalue, in absolute value.
- Shifting combined with power/inverse iteration makes it possible to compute eigenpairs for eigenvalue closest to shift.

