Numerical methods for eigenvalues and eigenvectors part II, MAT 3110 UiO

Håkon Hoel

Fall 2023

Table of Contents

(1) QR iteration/algorithm
(2) Tridigaonalization and Housholder transformations
(3) Perturbation analysis

QR iteration

Recall that for $A \in \mathbb{R}_{\text {sym }}^{n \times n}$, the power iteration

$$
\begin{align*}
x^{(m)} & =A x^{(m-1)} \tag{1}\\
z^{(m)} & =\frac{x^{(m)}}{\left\|x^{(m)}\right\|_{2}} \tag{2}\\
\lambda^{(m)} & =\left(z^{(m)}\right)^{T} A z^{(m)} \tag{3}
\end{align*}
$$

computes the dominant eigenvalue of A, and an eigenvector in the corresponding eigenspace.

QR iteration is an extension of power iteration that computes all eigenpairs of A simultaneously.

Algorithm 1: QR iteration

Data: $A \in \mathbb{R}^{n \times n}$
Set $A_{0}=A$.
for $m=0,1,2, \ldots$ do
Compute a QR factorization

$$
Q_{m} R_{m}=A_{m}
$$

for orthogonal Q_{m} and upper triangular R_{m}.
Assign value

$$
A_{m+1} \leftarrow R_{m} Q_{m} .
$$

end

Algorithm 2: QR iteration

Data: $A \in \mathbb{R}^{n \times n}$

Set $A_{0}=A$.
for $m=0,1,2, \ldots$ do
Compute $\quad Q_{m} R_{m}=A_{m}$

$$
A_{m+1} \leftarrow R_{m} Q_{m}
$$

end

Note:

- $R_{m}=Q_{m}^{T} A_{m} \Longrightarrow A_{m+1}=Q_{m}^{T} A_{m} Q_{m}$ are all similarity transformations.
- Which by iteration implies that

$$
A_{m+1}=\left(Q_{0} Q_{1} \ldots Q_{m}\right)^{T} A \underbrace{\left(Q_{0} Q_{1} \ldots Q_{m}\right)}_{=: Q^{(m)}} .
$$

- So if for some reason $Q^{(m)}=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]$ (eigenvectors of A), then

$$
A_{m+1}=\left(Q^{(m)}\right)^{T} A Q^{(m)}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

and the method has converged: $Q^{(r)}=Q^{(m)}$ and $A_{r}=A_{m+1}$ for all $r \geqq m$.

Theorem (Convergence of QR iteration)

Let $A \in \mathbb{R}_{\text {sym }}^{n \times n}$ with eigenvalue decomposition

$$
A=Q \wedge Q^{T}, \quad \text { with } \quad \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

where Q is orthogonal and eigenvalues are non-repeating and satisfying

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\ldots>\left|\lambda_{n}\right|>0
$$

Then the $Q R$ iteration sequence $A_{m}=R_{m} Q_{m}=\left(Q^{(m)}\right)^{T} A Q^{(m)}$ satisfies

$$
\lim _{m \rightarrow \infty} A_{m}=\Lambda \quad \text { and } \quad Q^{(m)} \approx\left[\pm v_{1}, \pm v_{2}, \ldots, \pm v_{n}\right] \text { for } m \gg 1
$$

Example (Application of QR iteration)

Consider

$$
A=\left[\begin{array}{lll}
0.7491 & 1.5494 & 0.7901 \\
1.5494 & 0.3120 & 1.0222 \\
0.7901 & 1.0222 & 1.2022
\end{array}\right]
$$

$\% \%$ Matlab implementation of QR iteration
Qm = eye(length(A));
for $m=0: 10$
$[\mathrm{Q}, \mathrm{R}]=\mathrm{qr}(\mathrm{A}) ;$
$\mathrm{A}=\mathrm{R} * \mathrm{Q}$;
Qm $=$ Qm*Q; \% for eigenvectors $Q^{\wedge}\{(m)\}$
end

Results

$$
A_{5}=\left[\begin{array}{ccc}
2.9973 & 0.0087 & 0.0000 \\
0.0087 & -1.0705 & 0.0002 \\
0.0000 & 0.0002 & 0.3366
\end{array}\right], \quad A_{10}=\left[\begin{array}{ccc}
2.9973 & -0.0001 & -0.0000 \\
-0.0001 & -1.0705 & 0.0000 \\
-0.0000 & 0.0000 & 0.3366
\end{array}\right]
$$

and

$$
Q^{(5)}=\left[\begin{array}{ccc}
0.5919 & -0.6042 & -0.5335 \\
0.5598 & 0.7844 & -0.2672 \\
0.5799 & -0.1405 & 0.8025
\end{array}\right], \quad Q^{(10)}=\left[\begin{array}{ccc}
-0.5906 & 0.6053 & -0.5336 \\
-0.5614 & -0.7832 & -0.2671 \\
-0.5796 & 0.1418 & 0.8024
\end{array}\right]
$$

Compare to reference eigenvalues of A :

$$
\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2} \\
\lambda_{3}
\end{array}\right]=\left[\begin{array}{c}
2.9973 \\
-1.0705 \\
0.3366
\end{array}\right]
$$

and eigenvectors

$$
\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0.5906 & 0.6053 & 0.5336 \\
0.5614 & -0.7832 & 0.2671 \\
0.5796 & 0.1418 & -0.8024
\end{array}\right]
$$

The theorem extends to any diagonalizable $A \in \mathbb{R}^{n \times n}$ with real-valued non-repeating eigenvalues. Then A_{m} converges to an upper triangular matrix with diagonal $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.

Example (Application of the QR iteration method)

Consider

$$
A=\left[\begin{array}{ccc}
1.271 & -6.409 & 9.208 \\
-2.875 & -25.668 & 38.705 \\
-2.120 & -20.259 & 30.397
\end{array}\right]
$$

\%\%Using same Matlab implementation
for $m=0: 10$

$$
\begin{array}{ll}
{[Q, R]=q r(A) ;} & \% Q_{-}\{m\} * R_{-}\{m\}=A_{-} m \\
A=R * Q ; & \% A_{-}\{m+1\}=R_{-} m * Q_{-} m
\end{array}
$$

end

Example (Application of the QR iteration method)

The matrix is diagonalizable:
$A=T D T^{-1}$, with $T=\left[\begin{array}{lll}0.298 & 0.938 & 0.055 \\ 0.756 & 0.245 & 0.820 \\ 0.582 & 0.244 & 0.569\end{array}\right]$ and $D=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$
and QR iterations yield:

$$
\begin{aligned}
A_{0}=A & =\left[\begin{array}{ccc}
1.271 & -6.409 & 9.208 \\
-2.875 & -25.668 & 38.705 \\
-2.120 & -20.259 & 30.397
\end{array}\right] \\
A_{1} & =\left[\begin{array}{ccc}
3.340 & 0.175 & -58.656 \\
-0.444 & 1.915 & 13.242 \\
0.010 & -0.002 & 0.745
\end{array}\right] \\
A_{2} & =\left[\begin{array}{ccc}
3.175 & 0.432 & 59.897 \\
-0.237 & 1.898 & -5.395 \\
-0.003 & 0.001 & 0.927
\end{array}\right] \\
\vdots & \\
A_{10} & =\left[\begin{array}{ccc}
3.005 & 0.756 & 59.787 \\
-0.007 & 1.995 & 6.519 \\
-0.000 & 0.000 & 1.000
\end{array}\right]
\end{aligned}
$$

Complex-valued eigenvalues

- When there is a complex-valued pair of eigenvalues

$$
\lambda_{j}=\bar{\lambda}_{j+1}
$$

then $\left|\lambda_{j}\right|=\left|\lambda_{j+1}\right|$. Not covered by Theorem 1.1.

- A_{m} then will converge towards a block upper triangular matrix. The diagonal of A_{m} will contain a 2×2 block matrix that has eigenvalues λ_{j} and λ_{j+1}.
As example, consider

$$
A=\left[\begin{array}{ccc}
30 & -18 & 5 \\
15 & 9 & -5 \\
9 & -27 & 24
\end{array}\right] \quad \text { with } \quad \sigma(A)=\{27+9 i, 27-9 i, 9\}
$$

QR iteration with start matrix $A_{0}=A$ yields

$$
A_{1}=\left[\begin{array}{ccc}
24.112 & -20.311 & 25.109 \\
6.315 & 34.734 & -6.260 \\
-1.941 & 5.921 & 4.154
\end{array}\right], \quad A_{5}=\left[\begin{array}{ccc}
35.799 & -14.881 & -19.641 \\
10.604 & 18.236 & -23.492 \\
-0.016 & 0.053 & 8.965
\end{array}\right]
$$

and

$$
A_{10}=\left[\begin{array}{ccc}
22.957 & -20.934 & 30.563 \\
4.650 & 31.043 & -0.604 \\
0.000 & -0.000 & 9.000
\end{array}\right]
$$

where

$$
\sigma\left(\left[\begin{array}{cc}
22.957 & -20.934 \\
4.650 & 31.043
\end{array}\right]\right)=\{26.999+9.000 i, 26.999-9.000 i\}
$$

Tridiagonalization of A

- Every QR iteration step of a full matrix A_{m} costs $\mathcal{O}\left(n^{3}\right)$ operations.
- Can be substantially improved by first tridiagonalizing A through preconditioning A_{0} :

$$
A_{0}=Q A Q^{T}
$$

where orthogonal matrix Q is a product of Householder transformations.

Tridiagonalization of A part II

For symmetric matrices, one can find such Q s.t.

$$
A=A^{T}=\left[\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{array}\right] \xrightarrow{Q A Q^{T}}\left[\begin{array}{lllll}
* & * & & & \\
* & * & * & & \\
& * & * & * & \\
& & * & * & * \\
& & & * & *
\end{array}\right]
$$

Efficiency gain: Cost of QR iterations starting from preconditioned A_{0} costs $\mathcal{O}(n)$.

Householder transformation

A matrix $H \in \mathbb{R}^{n \times n}$ on the form

$$
H=I-\frac{2}{v^{\top} v} v v^{\top}, \quad \text { with } \quad c \in \mathbb{R} \text { and } v \in \mathbb{R}^{n}
$$

is called a Householder matrix/transformation.
Properties:

- Orthogonality: $H^{\top} H=I$
- And for any vector $x \in \mathbb{R}_{*}^{n}$, one can find a vector $v \in \mathbb{R}^{n}$ s.t.

$$
H x=\left[\begin{array}{c}
\neq 0 \\
0 \\
\vdots \\
0
\end{array}\right] \quad \text { (first element is non-zero, others set to zero) }
$$

The choice $\quad v=x+c e_{1} \quad$ with $\quad c=\left\{\begin{array}{lll}\|x\|_{2} & \text { if } & x_{1} \geq 0 \\ -\|x\|_{2} & \text { if } & x_{1}<0,\end{array} \Longrightarrow H x=-c e_{1}\right.$.

Tridigonalizaiton of symmetric matrix

$$
\mathbf{A}=\left[\begin{array}{lllll}
4 & 1 & 2 & 1 & 3 \\
1 & 5 & 0 & 2 & 2 \\
2 & 0 & 3 & 1 & 1 \\
1 & 2 & 1 & 6 & 0 \\
3 & 2 & 1 & 0 & 7
\end{array}\right]
$$

Step 1: Find $H \in \mathbb{R}^{4 \times 4}$ such that last three elements of first row is removed, mean for

$$
x=\left[\begin{array}{l}
a_{21} \\
a 31 \\
a_{41} \\
a_{51}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
1 \\
3
\end{array}\right] \text { we seek } H \text { s.t. } H x=\left[\begin{array}{c}
\neq 0 \\
0 \\
0 \\
0
\end{array}\right]=
$$

Pick $v=x+\|x\|_{2} e_{1}=(1+\sqrt{15}, 2,1,3)^{T}$ and set

$$
H=I_{4}-\frac{2}{v^{\top} v} v v^{T}=\left[\begin{array}{cccc}
-0.2582 & -0.5164 & -0.2582 & -0.7746 \\
-0.5164 & 0.7881 & -0.1060 & -0.3179 \\
-0.2582 & -0.1060 & 0.9470 & -0.1590 \\
-0.7746 & -0.3179 & -0.1590 & 0.5231
\end{array}\right]
$$

Tridigonalizaiton of symmetric matrix II

Then (by two slides back),

$$
H x=-\|x\|_{2} e_{1}=-\sqrt{15} e_{1}
$$

And for

$$
H_{(5,4)}:=\left[\begin{array}{rr}
1 & 0^{T} \\
0 & H
\end{array}\right] \in \mathbb{R}^{5 \times 5}, \quad 0 \in \mathbb{R}^{4 \times 1}
$$

We obtain

$$
H_{(5,4)} A H_{(5,4)}^{T}=\left[\begin{array}{ccccc}
4.0000 & -3.8730 & 0 & -0.0000 & 0 \\
-3.8730 & 7.8667 & 2.0243 & -0.2788 & 0.4545 \\
0 & 2.0243 & 4.1788 & 0.2387 & 0.8876 \\
-0.0000 & -0.2788 & 0.2387 & 4.9440 & -2.0823 \\
0 & 0.4545 & 0.8876 & -2.0823 & 4.0106
\end{array}\right]
$$

Motivation for above structure:

- Multiplying with $H_{(5,4)}$ from left preserves/leaves elements in first row unchanged.
- Thereafter by $H_{(5,4)}^{T}$ from right preserves elements in first column (and zeros tail elements in first row by same reason $H_{(5,4)}$ zeroed tail elements in first

Step 2: Find $H \in \mathbb{R}^{3 \times 3}$ that zeros last two terms in column 2 of matrix $H_{(5,4)} A H_{(5,4)}^{T}$, i.e. of vector

$$
x=\left[\begin{array}{c}
2.0243 \\
-0.2788 \\
0.4545
\end{array}\right]
$$

Choose

$$
v=x+\|x\|_{2} e_{1} \quad \text { and } \quad H=I-\frac{2}{v^{T} v} v v^{T} .
$$

Set

$$
H_{(4,3)}=\left[\begin{array}{cc}
I_{2} & 0^{T} \\
0 & H
\end{array}\right] \in \mathbb{R}^{5 \times 5}, \quad 0 \in \mathbb{R}^{3 \times 2}
$$

and obtain

$$
H_{(4,3)} H_{(5,4)} A H_{(5,4)}^{T} H_{(4,3)}^{T}=\left[\begin{array}{ccccc}
4.0000 & -3.8730 & -0.0000 & -0.0000 & -0.0000 \\
-3.8730 & 7.8667 & -2.0934 & 0.0000 & -0.0000 \\
-0.0000 & -2.0934 & 4.6161 & 0.2827 & -1.0331 \\
-0.0000 & 0.0000 & 0.2827 & 4.9360 & -1.9441 \\
-0.0000 & 0.0000 & -1.0331 & -1.9441 & 3.5812
\end{array}\right]
$$

After another such step, finding $H_{(3,2)}$ that zeros last element in third column of latest matrix and leaves first three rows unchanged, we have a tridiagonal symmetric matrix

$$
\begin{aligned}
A_{0} & =\underbrace{H_{(3,2)} H_{(4,3)} H_{(5,4)}}_{Q} A \underbrace{H_{(5,4)}^{T} H_{(4,3)}^{T} H_{(3,2)}^{T}}_{Q^{T}} \\
& =\left[\begin{array}{ccccc}
4.0000 & -3.8730 & -0.0000 & 0.0000 & -0.0000 \\
-3.8730 & 7.8667 & -2.0934 & -0.0000 & -0.0000 \\
-0.0000 & -2.0934 & 4.6161 & -1.0711 & 0.0000 \\
0.0000 & 0.0000 & -1.0711 & 4.6654 & -2.0181 \\
-0.0000 & 0.0000 & 0 & -2.0181 & 3.8519
\end{array}\right]
\end{aligned}
$$

Definition

A matrix $A \in \mathbb{R}^{n \times n}$ is diagonalizable if and only if there exists an invertible matrix $T \in \mathbb{R}^{n \times n}$, s.t.

$$
D=T^{-1} A T
$$

where D is a diagonal matrix.
A sufficient condition for A being diagonalizable is that the matrix has n distinct eigenvalues
(then eigenvectors are linearly independent and $T=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]$ will diagonalize A).

Perturbed eigenvalue problem

Problem: we seek eigenvalues of matrix A, but we have/suspect some measurement errors $\triangle A$.

Question: how does eigenvalues of A relate to eigenvalues of $A+\Delta A$?

Theorem (Bauer-Fike)

Consider a diagonalizable matrix $A=T \wedge T^{-1} \in \mathbb{R}^{n \times n}$ with $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, and a perturbation $\Delta A \in \mathbb{R}^{n \times n}$. Then for any eigenvalue of the perturbed matrix $\mu \in \sigma(A+\Delta A)$, it holds that

$$
\begin{equation*}
\min _{\lambda \in \sigma(A)}|\mu-\lambda| \leq \underbrace{\|T\|_{2}\left\|T^{-1}\right\|_{2}}_{=: \kappa_{2}(T)}\|\Delta A\|_{2} \tag{4}
\end{equation*}
$$

Definition (Absolute condition number)

We define

$$
\frac{\min _{\lambda \in \sigma(A)}|\mu-\lambda|}{\|\Delta A\|_{2}} \quad\left(=\frac{\text { error output }}{\text { error input }}\right)
$$

as the absolute condition number of $\mu=\lambda(A+\Delta A)$
The result in theorem becomes:

$$
\frac{\text { error output }}{\text { error input }}=\min _{\lambda \in \sigma(A)} \frac{|\mu-\lambda|}{\|\Delta A\|_{2}} \leq \kappa_{2}(T)
$$

When $\kappa_{2}(T) \gg 1$, we refer to the perturbation eigenvalue problem as ill-conditioned.

Remarks on inequality

$$
\begin{equation*}
\min _{\lambda \in \sigma(A)}|\mu-\lambda| \leq \underbrace{\|T\|_{2}\left\|T^{-1}\right\|_{2}}_{=: \kappa_{2}(T)}\|\Delta A\|_{2} \tag{5}
\end{equation*}
$$

Remark

a) The upper bound for absolute condition number of the eigenvalue problem, $\kappa_{2}(T)$, only depends on T, and, perhaps surprisingly, not explicitly on eigenvalues of A.
b) For symmetric A, we can find an orthogonal T. This implies that $\kappa_{2}(T)=1$. (Eigenvalue perturbation is therefore a well-conditioned problem for such matrices.)

III-posed perturbation problems

If eigenvalues are repeating, or clustered very closely together, then perturbation problem can become ill-posed.
Consider the non-diagonalizable matrix (not covered by Bauer-Fike theorem):

$$
A=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \quad \text { with repeated eigenvalue } \quad \lambda=1
$$

For $A+\Delta A=\left[\begin{array}{ll}1 & \varepsilon \\ 1 & 1\end{array}\right] \quad$ with eigenvalues $1 \pm \sqrt{\varepsilon}$.
Input/perturbation error $\|\Delta A\|_{2}=\varepsilon \ll \sqrt{\varepsilon}=$ output error.

$$
\text { So that } \frac{\text { output error }}{\text { input error }}=\varepsilon^{-1 / 2} \text {. }
$$

Summary

- QR iteration, method for computing full spectrum of A
- Tridiagonalization of A can speed up QR iteration,
- Householder transformations, useful for tridigonalization
- Bauer-Fike theorem, an upper bound on how much $\sigma(A+\Delta A)$ varies from $\sigma(A)$.

