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Overview

1 Iterative methods for solving f (x) = 0

2 Matrix factorizations

3 Norms on linear spaces

4 Numerical methods for eigenvalues

5 Polynomial interpolation

6 Approximation estimates

7 Numerical integration

8 Splines

9 Ordinary differential equations
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Cou curriculum

SM 1.1-1.4 iterative methods for scalar problems
SM 2.1-2.7 and 2.9 solutions of linear systems of equations
SM 3.2-3.3 efficient solution methods for matrices with structure
SM 4.1-4.3 iterative methods for nonlinear systems of equations
Lecture notes on numerical methods for eigenvalues and eigenvectors
(excluding QR iteration)
SM 6.2-6.5 Lagrange and Hermite interpolation
SM 7.2-7.7 Newton-Cotes methods for numerical integration and
extrapolation methods
SM 8.2-8.5 Polynomial approximations in the infinity-norm
SM 9.2-9.4 Polynomial approximations in the 2-norm
SM 10.2 and 10.4-10.5 Gauss quadrature for numerical integration
SM 11.2 and 11.4 Linear splines and natural cubic splines
SM 12.1-12.3 and 12.5 and note on Runge–Kutta methods and A-Stability
for initial value problems.
The text The Monte Carlo method in a Nutshell by Fjordhold, Risebro and
Hoel.
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Fixed-point method

Solving f (x) = 0 for f : Rd → Rd can for some g : Rd → Rd be rephrased as
fixed point problem

g(x) = x where g(ξ) = ξ ⇐⇒ f (ξ) = 0.

Fixed-point method

x (k+1) = g(x (k)) k = 0, 1, . . .

Order of convergence: Let (x (k)) ⊂ Rd and suppose that

∥x (k) − ξ∥∞ > 0 ∀k and lim
k→∞

∥x (k+1) − ξ∥∞ = 0.

Let q ≥ 1 be the largest constant s.t.

lim
k→∞

∥x (k+1) − ξ∥
∥x (k) − ξ∥q

≤ C

for some C > 0, where we must have that C ∈ (0, 1) if q = 1. Then the sequence
is said to converge to ξ with order q.
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Fixed point method II

Let D ⊂ Rd be closed and nonempty in slides that follow (could be D = Rd) and
fix norm ∥ · ∥∞.
Contraction mapping: g : D → Rd is Lipschitz continuous if ∃L > 0 s.t.

∥g(x)− g(y)∥∞ ≤ L∥x − y∥∞ ∀x , y ∈ D,

and if L ∈ (0, 1), then g is called a contraction.

Theorem (Convergence)
Let mapping g ∈ C (D,Rd) satisfy g(D) ⊂ D and be a contraction on D in
∞−norm. Then g has unique f.p. ξ ∈ D and

x (k+1) = g(x (k)) k = 0, 1,

converges to ξ for any x (0) ∈ D.

Proof ideas: Both exploint contraction of g :

Uniqueness: ξ, η f.p. =⇒ ∥ξ−η∥∞ = ∥g(ξ)−g(η)∥∞ ≤ L︸︷︷︸
<1

∥ξ−η∥∞ =⇒ ξ = η.
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Existence of f.p.:

∥x (k+1) − x (k)∥∞ = ∥g(x (k) − g(x (k−1))∥∞
≤ L∥x (k) − x (k−1)∥∞
≤ . . . ≤ Lk∥x (1) − x (0)∥∞

Can use this to show that (x (k)) is a Cauchy sequence in (Rd , ∥ · ∥∞), as for
m > n ≥ 1,

∥x (m) − x (n)∥∞ ≤
m−1∑
k=n

∥x (k+1) − x (k)∥∞ ≤
m−1∑
k=n

Lk∥x (1) − x (0)∥∞

≤ Ln

1 − L
∥x (1) − x (0)∥∞ → 0 as m, n → ∞.

(1)

Cauchy sequence has a limit ξ := limk→∞ xk ∈ D and limit is an f.p. as

ξ = lim
k→∞

x (k) = lim
k→∞

x (k+1) = lim
k→∞

g(x (k)) =︸︷︷︸
g continuous

g( lim
k→∞

x (k)) = g(ξ).
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How many iterations needed?

For m = ∞, inequality (1) tells us that

∥ξ − x (n)∥∞ ≤ Ln

1 − L
∥x (1) − x (0)∥∞

Given ϵ > 0, how large n is needed to ensure

∥ξ − x (n)∥∞ ≤ ϵ ?

Above yields sufficient condition:

n =

⌈
ln(∥x (1) − x (0)∥∞)− ln((1 − L)ϵ)

ln(1/L)

⌉
where ⌈x⌉ := min{z ∈ Z | z ≥ x}.
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Jacobian of g : Jg (x) ∈ Rd×d has entries defined by

Jg (x)ij =
∂gi
∂xj

(x) 1 ≤ i , j ≤ d .

Theorem (Stable f.p.)
Let g ∈ C (D,Rd) with an f.p. ξ ∈ D. Assume ∃N(ξ) ⊂ D s.t. g ∈ C 1(N(ξ),Rd)
and ∥Jg (ξ)∥∞ < 1. Then ξ is a stable f.p. in the following sense:

∃ϵ > 0 and Bϵ ⊂ N(ξ) s.t. g(Bϵ(ξ)) ⊂ Bϵ(ξ)

and fixed point sequence x (k) → ξ as k → ∞ for any x (0) ∈ Bϵ(ξ).

Order of conv: Above result implies g is a local contraction mapping. When
FP-method with g converges and f is a local/global contraction with Lipschitz
const L ∈ (0, 1), then order of conv is at least q = 1, which can be deduced from

∥x (k+1) − ξ∥∞
∥x (k) − ξ∥∞

=
∥g(x (k))− g(ξ)∥∞

∥x (k) − ξ∥∞
≤ L.

Things to know: compute iterations of fixed-point method on Rd , how to use
above theorems and how to compute how many iterations are sufficient to reach
given accuracy constraint.
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Newton’s method for f : Rd → Rd

d = 1: x (k+1) = x (k) − f (x (k))

f ′(x (k))
k = 0, 1, . . .

d ≥ 1: x (k+1) = x (k) − (Jf (x
(k)))−1f (x (k)) k = 0, 1, . . .

This is a fixed point method with g(x) = x − (Jf (x)))
−1f (x).

Theorem
Let ξ ∈ Rd satisfy f (ξ) = 0, and suppose there exists an N(ξ) s.t.
f ∈ C 2(N(ξ),Rd) and that Jf (ξ) is invertible. Then the Newton sequence
converges to ξ if x (0) is sufficiently close to ξ, and order of convergence is at least
q = 2.

Know to: Compute iterations with method in Rd . Use theorem.
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LU factorization

Is a factorization of A ∈ Rn×n on the form

A = LU,

where L,U ∈ Rn×n with L unit lower triangular (ult) and U upper triangular (ut).
If factorization exists, following must hold

aij =

min(i,j)∑
k=1

ℓikukj 1 ≤ i , j ≤ n

Iterative formulas for rows of U and columns of L:
For m=1,. . . ,n: set ℓmm = 1 and

umj = amj −
m−1∑
k=1

ℓmkukj j = m, . . . , n

ℓim =
aim −

∑m−1
k=1 ℓikukm
umm

i = m + 1, . . . , n

LU-factorization exists whenever umm ̸= 0 for all m = 1, . . . , n − 1.
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LU-factorization II

Sufficient condition: LU-factorization exists if A(m), the leading prinicipal
submatrix of A of order m, is invertible for all m = 1, . . . , n − 1. (As this implies
umm ̸= 0 for all m = 1, . . . , n − 1. Why?)

Know how to: compute LU-factorization, know what it is used for, estimate
compuational cost LU-factorization, know how to prove properties of upper and
lower triangular matrices (if L and L̃ are ult of same size, then LL̃ is ult, L−1 is ult
etc.)
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PLU-factorization

Some square matrices are not LU factorizable, e.g.,

A =

[
0 1
1 1

]
why?

But every square matrix is PLU-factorizable, where P is a permutation matrix.
For example,

PA =

[
0 1
1 0

]
A =

[
1 1
0 1

]
is LU factorizable.

Know how to: How to use PLU-factorization to solve linear equations. Find P
such that PA is LU-factorizable (that is, know how to PLU-factorize). Properties
of permutation matrices.
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p-norms on Rn, and subordinate matrix norms

For u ∈ Rn,

∥u∥p :=


(∑d

i=1 |ui |p
)1/p

p ∈ [1,∞)

maxi=1,...,d |ui | p = ∞

Know: Verify that these are norms, and that they are equivalent norms. Use
Cauchy–Schwarz, Hölder’s and Minkowski’s inequalities. Prove Cauchy–Schwarz.

Subordinate matrix norms for A ∈ Rn×n:

∥A∥p := max
v∈Rn

∗

∥Av∥p
∥v∥p

Norm is “easily” computable for some p-values:

∥A∥1 = max
j=1,...,n

n∑
i=1

|aij |, ∥A∥2 = max
λ∈σ(ATA)

√
λ, ∥A∥∞ = max

i=1,...,n

n∑
j=1

|aij |.

Frequently used properties:

∥Av∥p ≤ ∥A∥p∥v∥p, ∥AB∥p ≤ ∥A∥p∥B∥p
Know: Verify that these are norms. Use above properties.
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Condition numbers applied to linear problems

How sensitive is solution x of Ax = b, for invertible A, to perturbations δb
in b?
Fixing p-norm, for some p ∈ [1,∞), We estimate sensitivity in terms of relative
condition error:

sup
δb∈Rn

∗

∥A−1(b + δb)− A−1b∥p/∥A−1b∥p
∥δb∥p/∥b∥p

≤ ∥A−1∥p∥A∥p

κp(A) = ∥A−1∥p∥A∥p is called the (p-norm) condition number of matrix A.

Can show that for A(x + δx) = b + δb,

∥δx∥p
∥x∥p︸ ︷︷ ︸

output rel. err.

≤ κp(A)
∥δb∥p
∥b∥p︸ ︷︷ ︸

input rel. err.

.

Know: How to show above inequalities. Be able to compute condition number
and interpret condition number. Classify ill-conditioned problems, and use
condition number to bound output error.
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QR-factorization

If A ∈ Rm×n with m ≥ n, then ∃Q ∈ Rm×n with QTQ = I and an upper
triangular R ∈ Rn×n s.t.

A = QR

with R invertible when rank(A) = n.

How to obtain when rank(A) = n (see notes for general):
1 Comlumn vector representation: A = [a1 a2 . . . an].
2 Gramm-Schmidt orthogonalization, For k = 1, . . . , n:

ck = ak −
k−1∑
j=1

(aTk qj)qj , qk = ck/∥ck∥2

3 Set Q = [q1 q2 . . . qn] and

R = QTA (verify that it will be upper triangular and invertible)

Know how to: Compute factorization, use for solving least squares problems
Ax = b, and argue why QR-factorization is useful for least squares problems.
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Positive definite matrices and Cholesky factorization

A matrix A ∈ Rn×n
sym is called positive definite if

xTAx > 0 ∀x ∈ Rn
∗.

A is pos. def. iff all eigenvalues of A are strictly positive,
and if A is pos. def. then

det(A) > 0
det(A(m)) > 0 for all m = 1, . . . , n
and one can find orthogonal eigenbasis for A . . .

Know: verify properties of positive definite matrices.

Given A ∈ Rn×n
sym , a factorization of the form A = LLT where L ∈ Rn×n is a lower

triangular matrix is called a Cholesky factorization of A.

Sufficient condition: If A is positive definite, then there exists a Cholesky
factorization for A.
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Cholesky factorization

How to compute L in A = LLT?: Similar constructive reasoning as for LU
factorization.

Cholesky plays similar role as LU-factorization, to solve Ax = b in this course,
but it has more applications.

Know:
Compute Cholesky factorization and how use it to solve Ax = b

Estimate computational cost of both LU and Cholesky factorization for full
and banded matrices (e.g. tridiagonal).
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Gershgorin’s theorem

Theorem (Gershgorin’s circle theorem)
For A = (aij) ∈ Rn×n with ri =

∑
j ̸=i |aij |, it holds that any λ ∈ σ(A) belongs to

some Gershgorin disc, meaning λ ∈ Di := {z ∈ C | |z − aii | ≤ ri} for at least one
i = 1, 2, . . . , n.

Extension of Gershgorin’s thm: If the Gershgorin discs of a matrix A ∈ Rn×n

for some ordering satisfies that B1 = ∪k
i=1Di is disjoint from B2 = ∪n

i=k+1Di

(meaning B1 ∩ B2 = ∅), then k eigenvalues belong to B1 and n − k eigenvalues
belong to B2.

And if all discs are disjoint, then each disc contains one and only one eigenvalue.

Know: How to prove the above theorem, and how to use it and the extension to
estimate spectrum of A, also in combination with similarity transformations
B = T−1AT .
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Iteration methods (here presented without normalization of
iter. vectors)

Power iteration (approx largest eigval):

x (k) = Ax (k−1), λ(k) =
(x (k))TAx (k)

∥x (k)∥2
2

, k = 1, 2, . . .

Inverse iteration (approx smallest eigval):

x (k) = A−1x (k−1), λ(k) =
(x (k))TAx (k)

∥x (k)∥2
2

, k = 1, 2, . . .

Inverse iteration with shift

x (k) = (A− µI )−1x (k−1), λ(k) =
(x (k))TAx (k)

∥x (k)∥2
2

, k = 1, 2, . . .

Know: How to compute iterations in practice, what λ(k) converge towards in
each case, what assumptions are sufficient to ensure convergence?
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Theorem (Bauer–Fike)

For a diagonalizable matrix A = TΛT−1 ∈ Rn×n with Λ = diag(λ1, . . . , λn), and
given a perturbation ∆A ∈ Rn×n, then it holds for the any eigenvalue in the
perturbed spectrum µ ∈ σ(A+∆A) that

min
λ∈σ(A)

|µ− λ| ≤ ∥T∥2∥T−1∥2︸ ︷︷ ︸
=:κ2(T )

∥∆A∥2, (2)

Know: How to use in practical computations.
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Lagrange interpolation

Given interpolation points {(xk , f (xk))}nk=0, there exists a unique pn ∈ Pn s.t.

pn(xk) = f (xk) k = 0, . . . , n

and it is given by

pn(x) =
n∑

k=0

Lk(x)f (xk) where LK (x) :=

{∏n
i=0,i ̸=k

x−xi
xk−xi

n ≥ 1
1 n = 1

Approximation error: If f ∈ C n+1[a, b] and all {xi}ni=0 ⊂ [a, b], then for all
x ∈ [a, b],

|f (x)− pn(x)| ≤
Mn+1

(n + 1)!
|πn+1(x)|

where Mn+1 = maxy∈[a,b] |f (n+1)(y)| and πn+1(x) =
∏n

i=0(x − xi ). And

|f ′(x)− p′n(x)| ≤
Mn+1

n!

n∏
i=1

|x − ηi |

for some {ηi}ni=1 ⊂ (a, b) (that are independent of x).
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Interpolation II

Know about Lagrange interp: Solve interpolation problems, prove uniqueness,
bound approximation error of pn ≈ f and p′n ≈ f ′, sufficient conditions for uniform
convergence ∥pn − f ∥∞ when n → ∞, and Runge’s phenomenon.

Hermite interpolation: Given interpolation points {(xk , f (xk), f ′(xk))}nk=0, there
exists a unique p2n+1 ∈ P2n+1 s.t.

p2n+1(xk) = f (xk) and p′2n+1(xk) = f ′(xk) k = 0, . . . , n

and it is given by

p2n+1(x) =
n∑

k=0

Hk(x)f (xk) + Kk(x)f
′(xk)

HK (x) := (Lk(x))
2(1 − 2L′(xk)(x − xk)), Kk(x) = (Lk(x))

2(x − xk)

Approx error: If f ∈ C 2n+2[a, b] and all {xi}ni=0 ⊂ [a, b], then for all x ∈ [a, b],

|f (x)− p2n+1(x)| ≤
M2n+2

(2n + 2)!
|πn+1(x)|2

Know: Compute Hermite interpolant, bound approx error.
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Best approximation in ∞-norm

For f ∈ C [a, b], we consider the ∞-norm

∥f ∥∞ = max
x∈[a,b]

|f (x)|,

and given f ∈ C [a, b], we seek the minmax polynomial (best approximation in
∞-norm) of degree ≤ n, meaning pn ∈ Pn s.t.

∥f − pn∥∞ = min
q∈Pn

∥f − q∥∞.

Result 1: For any n and f ∈ C [a, b], there exists a unique minmax polynomial pn.

Result 2: Weierstrass approx theorem implies that limn→∞ ∥pn − f ∥ = 0.

Question: How can one determine pn in practice?
This is easy for n = 0, but not easy in general. We explore some features relating
to minmax more generally.
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Chebyshev polynomials

Oscillation thm If f ∈ C [a, b] then pn ∈ Pn minmax to f iff there exists n + 2
critical points x0 < x1 . . . < xn + 1 in [a, b] s.t.

|f (xi )− pn(xi )| = ∥f − pn∥∞ i = 0, 1, . . . , n + 1

and
f (xi )− pn(xi ) = −(f (xi+1)− pn(xi+1)) i = 0, . . . , n

Chebyshev polynomials Are defined by Tn(t) := cos(n cos−1(t)) ∈ Pn for
n = 0, 1, . . . with exact degree of Tn equal to n.

Key property: ∥Tn+1∥∞ = 1 attained at points yk = cos(kπ/(n + 1))
k = 0, . . . , n + 1 with Tn+1(yk) = (−1)k .

Partial result minmax: For [a, b] = [−1, 1], f (t) = tn+1 has minmax polynomial
of degree ≤ n given by

pn(t) = f (t)− 2−nTn+1 and ∥pn − f ∥∞ = 2−n.

(as f (t)− pn(t) = 2−nTn+1(t) and RHS is a function satisfying oscillation thm
conditions at points {yk}).
Implication: For any f ∈ Pn+1 on [−1, 1], we can find minmax of degree n.
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Chebyshev interpolation points

Tn+1 has zeros ti = cos((i + 1/2)π/(n+ 1)) for i = 0, . . . , n. Can show that using
{ti}ni=0 ∈ [−1, 1] as interpolation points in Lagrange are ideal in the sense that
they are the points minimizing magnitude of

max
t∈[−1,1]

n∏
i=0

|t − ti | = max
t∈[−1,1]

|πn+1(t)| = 2−n.

Moreover, if f ∈ C 1[−1, 1], then Lagrange interpolation of f at Chebyshev
interpolation points is very robust, satisfying that

lim
n→∞

∥pn − f ∥∞ = 0.

Know: Oscillation theorem, define minmax polynomial of degree ≤ n, compute
minmax polynomial, and estimate error in special cases using Chebyshev
polynomials. Describe Chebyshev interpolation points and benefits of using these
points in Lagrange interpolation.
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Best approximation in weighted 2-norm

Given a weight function w ∈ C (a, b) that that is positive w(x) > 0 forall
x ∈ (a, b), and integrable

∫ b

a
w(x)dx < ∞, we introduced the space

L2
w (a, b) := {(measurable) f : (a, b) → R |

∫ b

a

|f (x)|2w(x)dx < ∞}.

Associated to this space we have the innner product

⟨f , g⟩ =
∫ b

a

f (x)g(x)w(x)dx ∀f , g ∈ L2
w (a, b)

and weighted 2-norm ∥f ∥2 :=
√

⟨f , f ⟩.

Objective: Given f ∈ L2
w (a, b), find pnPn s.t.

∥f − pn∥2 = inf
q∈Pn

∥f − q∥2.

Such a pn is called best approx to f in 2-norm of degree ≤ n.
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Approach:

1 Find polynomial orthonormal system {ϕi}ni=0 for Pn with degree(ϕi ) = i
using Gram–Schmidt.

2 Compute best approximation

pn =
n∑

i=0

⟨f , ϕi ⟩ϕi

Orthogonality result: For any f ∈ L2
w (a, b) and n ≥ 0, the best approximation

pn is unique and ⟨f − pn, q⟩ = 0 for all q ∈ Pn.

Error estimation:

∥f − pn∥2
2 = ∥f ∥2

2 −
n∑

i=0

|⟨f , ϕi ⟩|2.

NB! Orthonormal system depends on interval (a, b) and w(x).

Know: How to compute orthonormal system and best approx in 2-norm pn of
degree ≤ n given f , (a, b), and w(x). Prove that pn exists, is unique and above
orthogonallity result.
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Newton–Cotes rules

Is interpolation-based numerical integration:

I :=

∫ b

a

f (x)dx ≈
∫ b

a

pn(a)dx

where pn ∈ Pn is polynomial satisfying

pn(xi ) = f (xi ) i = 0, 1, . . . , n

with xi = a+ ih where h = (b − a)/n. By Lagrange interpolation∫ b

a

pn(x)dx =
n∑

k=0

∫ b

a

Lk(x)dx︸ ︷︷ ︸
=:wk

f (xk)

Hence
∫ b

a
f (x)dx ≈

∑n
k=0 wk f (xk). Examples

n = 1 :
f (a) + f (b)

2
(b − a), n = 2 :

f (a) + 4f ((a+ b)/2) + f (b)

6
(b − a)
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Newton–Cotes II

Approximation error:

|En(f )| =

∣∣∣∣∣I −
∫ b

a

pn(x)dx

∣∣∣∣∣ ≤ Mn+1

(n + 1)!

∫ b

a

|πn+1(x)|dx

yields

|E1(f )| ≤
M2

12
(b − a)3, and for n = 2 (improved to) |E2(f )| ≤

M4

2880
(b − a)5

Composite Trapezoidal rule: For m ≥ 1 let now h = (b − a)/m, xi = a+ ih for
i = 0, 1 . . . ,m and set

T (m) = h

(
f (x0) + f (xm)

2
+

m−1∑
i=1

f (xi )

)

Error: |I−T (m)| ≤ M2(b − a)

12
h2 . . . and higher order under periodicity condition.
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Composite Simpson rule

For m ≥ 1 let now h = (b − a)/2m, xi = a+ ih for i = 0, 1 . . . , 2m and set

S(m) =
h

3

m∑
i=1

(
f (x2i−2) + 4f (x2i−1) + f (x2i )

)

Error: |I − S(m)| ≤ M4(b − a)5

2880m4 = O(h4).

Know: Construction of Newton–Cotes rules, error estimates and application of
Trapezoidal and Simpson’s rules. Same also for composite Trapezoidal and
Simpson’s rules.
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Extrapolation methods for Newton–Cotes

Extrapolation methods: One can show that when f is sufficiently smooth,

I − T (m) = c1h
2 + c2h

4 +O(h6)

with h = (b − a)/m and constants independent of h > 0.

Improve rate by Richardson extrapolation:

T1(m) :=
4T (2m)− T (m)

3
, yields I − T1(m) = −c2

4
h4 +O(h6)

Extends to Romberg integration: Set T0(m) := T (m) and

Tk(m) :=
4kTk−1(2m)− Tk−1(m)

4k − 1
k ≥ 1 with |I − Tk(m)| = O(h2k+2).

Know: Construction and application of above extrapolation methods.
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Gauss quadrature

Goal: Given weight function w and f ∈ C [a, b], approximate

I :=

∫ b

a

w(x)f (x)dx

Idea: Use Hermite interpolant p2n+1 ∈ P2n+1

p2n+1(x) =
n∑

k=0

Hk(x)f (xk) + Kk(x)f
′(xk) ≈ f (x)

and choose interpolation points {xi}ni=0 in smart way to obtain that

I ≈
∫ b

a

w(x)p2n+1(x)dx =
n∑

k=0

∫ b

a

w(x)(Lk(x))
2dx︸ ︷︷ ︸

Wk

f (xk)

Benefit: then only need to compute n + 1 weights and function evaluations
instead of expected 2n + 2.
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Gauss quadrature

Given n ≥ 0:
1 Compute polynomial orthogonal basis ϕ0, . . . , ϕn+1 to Pn+1 st deg(ϕi ) = i .

Let {xk}nk=0 be zeros of ϕn+1 (these are all distinct and in (a, b) by SM Thm
9.4).

2 Set, as before, Lk =
∏

i ̸=k(x − xi )/(xk − xi ) compute weights Wk and obtain
Gauss rule using n + 1 quad points by

Gn(a, b) :=
n∑

k=0

Wk f (xk)

Error: If w ∈ C (a, b) is positive and integrable and f ∈ C 2n+2[a, b] for some
n ≥ 0, then

|I − Gn(a, b)| ≤
∫ b

a

w(x)|f (x)− p2n+1(x)|dx ≤ M2n+2

(2n + 2)!

∫ b

a

w(x)(πn+1(x))
2dx
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Composite Gauss rules for setting with w ≡ 1

1 Divide [a, b] into m subintervals [xi−1, xi ] with xi = a+ ih,
i = 0, 1, . . . ,m − 1 and h = (b − a)/m.

2 Set

I =
m∑
i=1

∫ xi

xi−1

f (x)dx ≈
m∑
i=1

Gn(xi−1, xi ) =: Gm,n

Gm,n uses m subintervals with n + 1 quadrature points over each subinterval.

Example: Composite midpoint rule with m ≥ 1,

Gm,0 =
m∑
i=1

G0(xi−1, xi ) = h
n∑

i=1

f ((xi−1 + xi )/2).

Error estimate: f ∈ C 2n+2[a, b] =⇒ |I−Gm,n| ≤
M2n+2(b − a)

(2n + 2)!22n+2 h
2n+2 = O(h2n+2)

Comparison: At same computational budget, Newton–Cotes rule achieves
O(hn+1) approx error.

Know: compute/construct Gn(a, b) given w and (a, b) and how to estimate error
|I −Gn(a, b)|. In setting w ≡ 1, extension to composite Gauss rule and computing
Gm,n.
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Monte Carlo integration

For square integrable f : [0, 1]d → Rd , we approximate

I (f ) :=

∫
[0,1]d

f (x)dx

by Monte Carlo estimator

IM(f ) =
1
M

M∑
m=1

f (Xm)

where X1, . . . ,XM ∼ U([0, 1]d) are mutually independent.

By the independence and identical distribution of Xi and the linearity of the
expectation operator, we obtain the root-mean square error (RMSE)

EM :=
√
E[(IM(f )− E[f (X )])2] =

√
Var[f (X )]√

M

where X ∼ U([0, 1]d). Can further show that

Var[f (X )] = E[(f (X )− E[f (X )])2] ≤
(supx∈[0,1]d f (x)− infx∈[0,1]d f (x))

2

4
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Order of convergence

This yields RMSE

EM =

√
Var[f (X )]√

M
≤

supx∈[0,1]d f (x)− infx∈[0,1]d f (x)

2
√
M

= O(M−1/2)

(last inequality useful when it’s difficult to estimate Var[f (X )]).

Alternative error bound: By Chebyshev inequalities we obtain for any ϵ > 0 that

P(|IM(f )−I (f )| ≥ ϵ) ≤ Var[f (X )]

ϵ2M
≤

(supx∈[0,1]d f (x)− infx∈[0,1]d f (x))
2

4ϵ2M
= O(M−1)

Convergence in probabilty: If Var[f (X )] < ∞, then for any ϵ > 0,

lim
M→∞

P(|IM(f )− I (f )| ≥ ϵ) = 0.

and also possible to show stronger result: P-almost sure convergence

P
(

lim
M→∞

IM(f ) = I (f )
)
= 0.
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Error control through number of samples

Given ϵ > 0, can ask how large M is needed to ensure that EM ≤ ϵ ?

Answer: By previous slide, need M so large that

Var[f (X )]

M
≤ ϵ2 =⇒ M =

⌈
Var[f (X )]

ϵ2

⌉
,

or alternatively (if Var[f (X )] is not computable),

(supx∈[0,1]d f (x)− infx∈[0,1]d f (x))
2

4M
≤ ϵ2 =⇒ M =

⌈
(supx∈[0,1]d f (x)− infx∈[0,1]d f (x))

2

4ϵ2

⌉
.

But can also ask, given ϵ > 0 and δ ∈ (0, 1), how large M is needed to ensure

P(|IM(f )− I (f )| ≥ ϵ) ≤ δ?

and, by previous slide, determine M by either

Var[f (X )]

ϵ2M
≤ δ, or

(supx∈[0,1]d f (x)− infx∈[0,1]d f (x))
2

4ϵ2M
≤ δ.
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Monte Carlo integration

Monte Carlo is said to overcome curse of dimensionality in the sense that its
order of convergence for IM(f ) → I (f ) does not depend on state-space
dimension d and they do not depend on regularity of f as long as∫

[0,1]d
|f (x)|2dx < ∞.

This is different from classic quadrature methods, like Newton–Cotes or
Gauss, as they depend both on d and the regularity of f .

Monte Carlo is often more efficient and flexible than classic quadrature
methods for numerical integration in high dimensions d .

Know: implement Monte Carlo integration for a given square integrable
f : [0, 1]d → R, estimate number of samples needed to reach error bound, and
know when method is useful.
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Splines I

Piecewise polynomial approximation of f : [a, b] → R over subintervals [xi−1, xi ]
with the set of knots

a = x0 < x1 < . . . < xm = b

(Piecewise) linear spline interpolation: sL : [a, b] → R is piecewise linear
function sL|[xi−1,xi ] ∈ P1 over each interval, so two unkown coefficients per interval.
Spline has 2m equal-to-f -at-knots constraints:

sL(xi−) = f (xi ) and sL(xi+) = f (xi ) i = 1, . . . ,m−1 and sL(a) = f (a), sL(b) = f (b).

where sL(x−) := limδ↓0 sL(x + δ) and sL(x+) := limδ↓0 sL(x + δ).
Solution: For each interval and x ∈ [xi−1, xi ],

sL(x) :=
xi − x

xi − xi−1
f (xi−1) +

x − xi−1

xi − xi−1
f (xi )

Error bound: If f ∈ C 2[a, b], then (by error estimates for Lagrange interpolation)

max
x∈[a,b]

|SL(x)− f (x)| ≤
maxx∈[a,b] |f ′′(x)|

8
h2

where h = maxi=1,...,m |xi − xi−1|.
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Natural cubic spline interpolation

Is function s2 : [a, b] → R that is piecewise cubic s2|[xi−1,xi ] ∈ P3, so four unknown
coefficients per interval.

Spline has 2m equal-to-f -at-knots constraints:

s2(xi−) = f (xi ), s2(xi+) = f (xi ) i = 1, . . . ,m−1 and s2(a) = f (a), s2(b) = f (b),

2m − 2 smoothig-conditions-at-knots constraints:

s ′2(xi−) = s ′2(xi+) s ′′2 (xi−) = s ′′2 (xi+) m = 1, . . . ,m − 1

and boundary constraints s ′′2 (a) = 0 and s ′′2 (b) = 0.

This yields 4m constraints for 4m unknowns and can be solved by writing
σi = s ′′2 (xi ) and integrating twice

s ′′2 (x) =
xi − x

xi − xi−1
σi−1 +

x − xi−1

xi − xi−1
σi x ∈ [xi−1, xi ].

Know: Given f : [a, b] → R compute linear and obtain system of equations for
determining σ0, . . . , σm for natural cubic splines.
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Existence and uniqueness

Theorem (Existence and uniqueness)
Consider the IVP

y ′ = f (t, y) t ∈ [a, b], y(a) = y0 ∈ Rd (3)

with f ∈ C ([a, b]× Rd ,Rd) Lipschitz in y . Then there exists a unique solution
to (3) with y ∈ C 1([a, b],Rd).

Theorem (Convergence of one-step method)

Consider the IVP (3) with f Lipschitz in y . Let yn+1 = yn + hΦ(tn, yn; h) with
h = (b − a)/N and tn = a+ nh, be an explicit one-step method with order of
accuracy p ≥ 1 (for particular IVP). Then it holds that

max
n=0,1,...,N

∥yn − y(tn)∥ = O(hp).

Know: Application above theorems. Compute truncation error, consistency,
global error, order of accuracy for given explicit or implicit Runge–Kutta one-step
method applied to a given/particular IVP.
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Runge–Kutta methods and A-Stability

Know how to translate to translate Butcher tableau (b, c ,A) into one-step
method and oppositely, given one-step method (for up to s = 2 stages) into
Butcher tableau.

For explicit RK methods, know sufficient conditions on (b, c ,A) to obtain
consistency, and order of accuracy at least p = 1 and p = 2.

For given RK method, be able to compute stability function R(z), region of
absolute stability and determine if method is A-stable or not.

Be able to compute one or two solution iterations of RK-methods for
higher-dimensional problems.

Understand strengths and weaknesses of explicit and implicit RK methods
(Key features: stiff problems, stability and computational cost of solution
iterations.)
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