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Overview

=

Iterative methods for solving f(x) =0

Matrix factorizations

o

=

Norms on linear spaces

[~

Numerical methods for eigenvalues

&

Polynomial interpolation

Approximation estimates

B =2

Numerical integration

Splines

Ordinary differential equations
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Cou curriculum

m SM 1.1-1.4 iterative methods for scalar problems

m SM 2.1-2.7 and 2.9 solutions of linear systems of equations

m SM 3.2-3.3 efficient solution methods for matrices with structure
m SM 4.1-4 .3 iterative methods for nonlinear systems of equations

m Lecture notes on numerical methods for eigenvalues and eigenvectors
(excluding QR iteration)

m SM 6.2-6.5 Lagrange and Hermite interpolation

m SM 7.2-7.7 Newton-Cotes methods for numerical integration and
extrapolation methods

m SM 8.2-8.5 Polynomial approximations in the infinity-norm

m SM 9.2-9.4 Polynomial approximations in the 2-norm

m SM 10.2 and 10.4-10.5 Gauss quadrature for numerical integration

m SM 11.2 and 11.4 Linear splines and natural cubic splines

m SM 12.1-12.3 and 12.5 and note on Runge—Kutta methods and A-Stability
for initial value problems.

m The text The Monte Carlo method in a Nutshell by Fjordhold, Risebro and
Hoel.
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Fixed-point method

Solving f(x) =0 for f : R? — R? can for some g : RY — R be rephrased as
fixed point problem

g(x) =x where g(§) =¢ = f(¢)=0.

Fixed-point method

Order of convergence: Let (x(K)) ¢ R? and suppose that

[x%) — €)oo >0 Vk and klim [x+D — ¢l = 0.
— 00

Let g > 1 be the largest constant s.t.

(k+1) _
i XD gl
k—»00 ||X(k)—§||q

C

for some C > 0, where we must have that C € (0,1) if g = 1. Then the sequence
is said to converge to £ with order q.
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Fixed point method Il

Let D C R? be closed and nonempty in slides that follow (could be D = R?) and
fix norm || - |-

Contraction mapping: g : D — RY is Lipschitz continuous if 3L > 0 s.t.
1g(x) —8W)llee < Llix=ylls  Vx,y €D,
and if L € (0,1), then g is called a contraction.

Theorem (Convergence)

Let mapping g € C(D,RY) satisfy g(D) C D and be a contraction on D in
oo—norm. Then g has unique f.p. £ € D and

SIS O

converges to & for any x(©) e D.

Proof ideas: Both exploint contraction of g:

Uniqueness: &, 7 f.p. = [|{=1]lcc = [18(§)—8(M)lloc < L _lE=1llcc = £ =1
<1
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Existence of f.p.:

I — X B = [lg(x*) — g(x* )|
< L”X _X(k_l)Hoo
<< LR = X))
Can use this to show that (x(¥)) is a Cauchy sequence in (R, || - ||o0), as for
m>n>1,
m—1 m—1
I Xy < 37 k) = B < 3 LKA - X
k=n k=n (1)
Ln
<7 LHx(l) —xO =0 as mn— .
Cauchy sequence has a limit £ := limy_, oo Xk € D and limit is an f.p. as
- (k) — (k+1) _ - (Ky —
&= I|moox kl|_>moox I|m g(x ) (k||_>moox ) =g(¢&).

g continuous
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How many iterations needed?

For m = oo, inequality (1) tells us that

€ =X oo < o X = x)]
Given € > 0, how large n is needed to ensure
1€ =Xl <€ ?

Above yields sufficient condition:

n_{mw%”—%WMJ—mﬂl—wa
In(1/L)

where [x] :==min{z € Z | z > x}.
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Jacobian of g: J;(x) € R?%9 has entries defined by

og; ..
&vn:aiu> 1<ij<d.

Theorem (Stable f.p.)

Let g € C(D,RY) with an f.p. £ € D. Assume IN(£) C D s.t. g € CL(N(€),RY)
and || Jg(€)|loc < 1. Then & is a stable f.p. in the following sense:

Je > 0 and B, C N(¢) s.t. g(B.(€)) C B(€)

and fixed point sequence x\¥) — ¢ as k — oo for any x(©) € B,(€).

Order of conv: Above result implies g is a local contraction mapping. When
FP-method with g converges and f is a local/global contraction with Lipschitz
const L € (0,1), then order of conv is at least g = 1, which can be deduced from

D — €l g9 — g(€)llos _ |

X0 = ¢lloo X9 —¢lloe T

Things to know: compute iterations of fixed-point method on RY, how to use
above theorems and how to compute how many iterations are sufficient to reach

given accuracy constraint.
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Newton's method for f : RY — RY

f(x(K)
—1- (k+1) _ (k) _ _
d=1: x =X F1(x®) k=0,1,

d>1: xUHD) = x0) _ (g (xONF(xK)y  k=0,1,...
This is a fixed point method with g(x) = x — (Jr(x))) 1 ().

Theorem

Let &£ € RY satisfy f(€) = 0, and suppose there exists an N(€) s.t.

f € C3(N(€),RY) and that J¢(€) is invertible. Then the Newton sequence
converges to & if X9 is sufficiently close to &, and order of convergence is at least
qg=2.

Know to: Compute iterations with method in R?. Use theorem.
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LU factorization
Is a factorization of A € R"*" on the form
A= LU,

where L, U € R™" with L unit lower triangular (ult) and U upper triangular (ut).
If factorization exists, following must hold

min(i,j)

Z lpuy  1<ij<n

Iterative formulas for rows of U and columns of L:
For m=1,...,n: set {m =1 and

umj:amj—g Cmi U j=m,...,n

m—1
aim — Zk:l Lix Uim
gim -

Umm

i=m+1,...,n

L U-factorization exists whenever u,, 20 forall m=1,....n—1.
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L U-factorization |l

Sufficient condition: LU-factorization exists if A(™ the leading prinicipal
submatrix of A of order m, is invertible for all m=1,...,n— 1. (As this implies
Unm #Z0forall m=1,...,n—1. Why?)

Know how to: compute LU-factorization, know what it is used for, estimate
compuational cost LU-factorization, know how to prove properties of upper and
lower triangular matrices (if L and L are ult of same size, then LL is ult, L= is ult
etc.)
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PLU-factorization

Some square matrices are not LU factorizable, e.g.,

01
= ?
A L 1] why?

But every square matrix is PLU-factorizable, where P is a permutation matrix.

For example,
0 1 11
=i ga-ls o]

Know how to: How to use PLU-factorization to solve linear equations. Find P
such that PA is LU-factorizable (that is, know how to PLU-factorize). Properties
of permutation matrices.

is LU factorizable.
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p-norms on R”, and subordinate matrix norms

For u e R",

(SLulul)”” peitoo)

maxi=1,....d |Ui| p=0o0

llullp =

Know: Verify that these are norms, and that they are equivalent norms. Use
Cauchy-Schwarz, Hélder's and Minkowski's inequalities. Prove Cauchy-Schwarz.

Subordinate matrix norms for A € R"*":

A
Al = max [Av]e
B e

Norm is “easily” computable for some p-values:

n n
JAlL = max Slagl,  [Alz= max VA Al = max >yl
j=1,...,n e} AET(ATA) i=1,...,n =

Frequently used properties:
[AV][o < [|A[lpl[v]p, [ABll, < Al 1Bl

Know: Verify that these are norms. Use above properties.
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Condition numbers applied to linear problems

How sensitive is solution x of Ax = b, for invertible A, to perturbations 6b
in b?

Fixing p-norm, for some p € [1,00), We estimate sensitivity in terms of relative
condition error:

|A~(b + db) — A1bll,/||A~*b]l, -1
sup < ATl lIAl
sbeRy 16b1]/11b1l, e
kip(A) = |A7Y|,||All» is called the (p-norm) condition number of matrix A.

Can show that for A(x + dx) = b+ b,

1) ob
56 gy 1950
11 161l
——
output rel. err. input rel. err.

Know: How to show above inequalities. Be able to compute condition number
and interpret condition number. Classify ill-conditioned problems, and use
condition number to bound output error.
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QR-factorization

If A R™" with m > n, then 3Q € R™*" with QT Q =/ and an upper
triangular R € R"™" s.t.

A=QR
with R invertible when rank(A) = n.
How to obtain when rank(A) = n (see notes for general):
Comlumn vector representation: A =[a; a...a,)].

Gramm-Schmidt orthogonalization, For k =1,..., n:
k—1
a=a— Y (4 q)g  q=c/lcl2
j=1

Set @ =[g1 g2...qx,] and

R=Q"A (verify that it will be upper triangular and invertible)

Know how to: Compute factorization, use for solving least squares problems
Ax = b, and argue why QR-factorization is useful for least squares problems.
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Positive definite matrices and Cholesky factorization

A matrix A € RZTT is called positive definite if

xTAx >0 Vx € R].

m Ais pos. def. iff all eigenvalues of A are strictly positive,
m and if Ais pos. def. then

m det(A) >0

m det(A™)>0forallm=1,...,n

m and one can find orthogonal eigenbasis for A . ..

Know: verify properties of positive definite matrices.

Given A € RDX", a factorization of the form A= LLT where L € R™" is a lower

triangular matrix is called a Cholesky factorization of A.

Sufficient condition: If A is positive definite, then there exists a Cholesky
factorization for A.
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Cholesky factorization

How to compute L in A= LL"?: Similar constructive reasoning as for LU
factorization.

Cholesky plays similar role as LU-factorization, to solve Ax = b in this course,
but it has more applications.

Know:

m Compute Cholesky factorization and how use it to solve Ax = b

m Estimate computational cost of both LU and Cholesky factorization for full
and banded matrices (e.g. tridiagonal).
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Gershgorin's theorem

Theorem (Gershgorin's circle theorem)

For A= (a;) € R™" with r; = 3. |a;l, it holds that any X € o(A) belongs to
some Gershgorin disc, meaning A € D; :={z € C | |z — a;| < r;} for at least one
i=1,2,....n.

Extension of Gershgorin’s thm: If the Gershgorin discs of a matrix A € R"*"
for some ordering satisfies that B; = UX_, D; is disjoint from B, = U, ; D;
(meaning By N B> = (), then k eigenvalues belong to By and n — k eigenvalues
belong to B.

And if all discs are disjoint, then each disc contains one and only one eigenvalue.

Know: How to prove the above theorem, and how to use it and the extension to

estimate spectrum of A, also in combination with similarity transformations
B=T"1AT.
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lteration methods (here presented without normalization of
iter. vectors)

Power iteration (approx largest eigval):

x) = Ax(k=1) A = )T A0 k=12
’ Iz T
Inverse iteration (approx smallest eigval):
NT A u(k
0 ey ko G A
’ x5 o
Inverse iteration with shift
(VT px (k)
() — (A — ) ~1xk=D) w _ XO)TACD
X (A= pl)~x , A FRIE k=12, ...

Know: How to compute iterations in practice, what A(%) converge towards in
each case, what assumptions are sufficient to ensure convergence?
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Theorem (Bauer—Fike)

For a diagonalizable matrix A= TAT ! € R™" with A = diag()\1, ..., \,), and
given a perturbation AA € R"*", then it holds for the any eigenvalue in the
perturbed spectrum 1 € (A + AA) that

min [p =A< [ T2l T2 [AAl, (2)
co(A) —_———

=:k2(T)

Know: How to use in practical computations.
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Lagrange interpolation
Given interpolation points {(xk, f(xx))}7_g, there exists a unique p, € P, s.t.
pn(Xk):f(Xk) k:O,...,n

and it is given by

>1
Z Li(x)f(xx) where Lx(x):= {H 0tk X M2 )
n—

Approximation error: If f € C""1[a, b] and all {x;}7_, C [a, b], then for all
x € [a, b],

[f(x) = Pa(x)] <

M+
( +1) ‘ n+1( )I

where My1 = maxyep.p [F"FD(y)] and mhi1(x) = [T/ (x — x;). And

[F1(x) = "“ H x =il

for some {n;}"_; C (a, b) (that are independent of x).
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Interpolation |l

Know about Lagrange interp: Solve interpolation problems, prove uniqueness,
bound approximation error of p, &~ f and p/, = f’, sufficient conditions for uniform
convergence ||p, — f||oc When n — oo, and Runge's phenomenon.

Hermite interpolation: Given interpolation points {(xx, f(xk), f'(x«))}i_o, there
exists a unique papy1 € Popt1 s-t.

Pant1(x) = f(x) and  phi(x)=f'(xk) k=0,....n
and it is given by

n

pani1(x) = D> Hi()Ff () + Ki(X)F ()
k=0

Hic(x) = (Le())(1 = 2L () (x = xi)), Ki(x) = (Le(x))?(x — xc)

Approx error: If f € C?"2[a, b] and all {x;}"_, C [a, b], then for all x € [a, b],

Map,
[F(x) = Pana(X)] € oo (%))

(2n+2)!

Know: Compute Hermite interpolant, bound approx error.
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Best approximation in oo-norm

For f € C[a, b], we consider the co-norm

[fllo = max_|F(x)],

x€|a,b)

and given f € C[a, b], we seek the minmax polynomial (best approximation in
oo-norm) of degree < n, meaning p, € P, s.t.

1= Pnllec = min [ — ql|oc.

Result 1: For any n and f € C[a, b], there exists a unique minmax polynomial p,.
Result 2: Weierstrass approx theorem implies that lim,_, ||pn — f|| = 0.

Question: How can one determine p, in practice?
This is easy for n = 0, but not easy in general. We explore some features relating
to minmax more generally.
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Chebyshev polynomials

Oscillation thm If f € C[a, b] then p, € P, minmax to f iff there exists n + 2
critical points xo < x1 ... < x,+ 1in [a, b] s.t.

|f(X’)_p"(X’)|:||f_pn||OO i:O,l,...,n+l
and
f(xi) = pa(xi) = =(f(Xi+1) = pa(xiv1))  i=0,....n
Chebyshev polynomials Are defined by T,(t) := cos(ncos~1(t)) € P, for
n=0,1,... with exact degree of T, equal to n.

Key property: || T,11|lco = 1 attained at points yx = cos(kw/(n+ 1))
k=0,...,n+1with T,y 1(y) = (-1

Partial result minmax: For [a, b] = [-1,1], f(t) = t""! has minmax polynomial
of degree < n given by

pa(t) =1f(t) —27"Th1 and ||pp — fllec =27".

(as (t) — pa(t) =27"T,11(t) and RHS is a function satisfying oscillation thm
conditions at points {yx}).

Implication: For any f € P,y on [—1,1], we can find minmax of degree n.
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Chebyshev interpolation points

Tot1 has zeros t; = cos((i +1/2)w/(n+1)) for i =0,...,n. Can show that using
{ti}_o € [-1,1] as interpolation points in Lagrange are ideal in the sense that
they are the points minimizing magnitude of

n

max t—t| = max t)=2"".
tE[—l,l]g‘ | te[~1,1] i1 (0)]

Moreover, if f € C1[—1,1], then Lagrange interpolation of f at Chebyshev
interpolation points is very robust, satisfying that

lim ||pn — fllec = 0.

n—oo
Know: Oscillation theorem, define minmax polynomial of degree < n, compute
minmax polynomial, and estimate error in special cases using Chebyshev

polynomials. Describe Chebyshev interpolation points and benefits of using these
points in Lagrange interpolation.
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Best approximation in weighted 2-norm

Given a weight function w € C(a, b) that that is positive w(x) > 0 forall
x € (a, b), and integrable fab w(x)dx < oo, we introduced the space

b
L2 (a, b) := {(measurable) f : (a,b) = R | / |F(x)[Pw(x)dx < oo}

Associated to this space we have the innner product

b

(f.g) = | fgmi)de  VF.g € Li(a.b)

and weighted 2-norm ||f |2 := \/(f, ).
Objective: Given f € L2 (a,b), find p,P, s.t.

1 = pnll2 = inf If — qll=.

Such a p, is called best approx to f in 2-norm of degree < n.

26 /42



Approach:

Find polynomial orthonormal system {¢;}7_, for P, with degree(¢;) = i
using Gram—Schmidt.
Compute best approximation

n

pn =Y (F )i

i=0
Orthogonality result: For any f € L2 (a, b) and n > 0, the best approximation

pn is unique and (f — p,, g) = 0 for all g € P,,.

Error estimation:

1f = pall3 = [IF113 = D 1(F, 60}
i=0

NB! Orthonormal system depends on interval (a, b) and w(x).

Know: How to compute orthonormal system and best approx in 2-norm p, of
degree < n given f, (a, b), and w(x). Prove that p, exists, is unique and above

orthogonallity result.
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Newton—Cotes rules

Is interpolation-based numerical integration:

| := /ab f(x)dx = /ab pn(a)dx

where p, € P, is polynomial satisfying
pn(Xi):f(Xi) i:Oala"'an

with x; = a + ih where h = (b — a)/n. By Lagrange interpolation

b n b
/ pn(x)dx = Z/ Li(x)dx f(xi)
a k=0 a

Wi
Hence fab f(x)dx ~ Y7 _o wif(xk). Examples

_f(a) + f(b)

I f(a) +4F((a + b)/2) + F(b)

b— =2:
(b-2a). -

(b—a)

28 /42



Newton—Cotes |l

Approximation error:

b Mn+1 b
|En(f)| = /_/a pn(x)dx| < (nJrl)!/a |Tn41(x)|dx
yields
M, s _ A s
< —(b— = < —
|E1(F)| < 5 (b—a)°, and for n = 2 (improved to) |Ex(f)| < 2880(b a)

Composite Trapezoidal rule: For m > 1 let now h = (b — a)/m, x; = a+ ih for
i=0,1...,m and set

Mz(b — a)

Error: |/I-T <
rror: | (m)] < 15

h? ...and higher order under periodicity condition
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Composite Simpson rule

For m>1let now h=(b—a)/2m, x; =a+ihfor i =0,1...,2m and set
32( xai-2) + 4 (xai-1) + Fx2i))

M4(b — 8)5

: - <
Error |l = S(m)| < 8303

= O(h").

Know: Construction of Newton—Cotes rules, error estimates and application of
Trapezoidal and Simpson’s rules. Same also for composite Trapezoidal and
Simpson's rules.
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Extrapolation methods for Newton—Cotes

Extrapolation methods: One can show that when f is sufficiently smooth,
I — T(m) = a1 h® + coh* + O(h%)

with h = (b — a)/m and constants independent of h > 0.

Improve rate by Richardson extrapolation:

4T(2m) — T(m)

Tl(m) = 3

. yields /_Tl(m):_%huowﬁ)

Extends to Romberg integration: Set To(m) := T(m) and

_ 4k Tk_1(2m) — Tk_l(m)

Ti(m) : T

k>1 with [l — Ti(m)| = O(h*T2).

Know: Construction and application of above extrapolation methods.
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Gauss quadrature

Goal: Given weight function w and f € CJa, b], approximate

| = /ab w(x)f(x)dx

Idea: Use Hermite interpolant pa,i1 € Pant1
P2n+1(x Z Hic(x)f (xi) + Ki(x)f'(xic) = f(x)

and choose interpolation points {x;}?_, in smart way to obtain that

I%/a w(x)pant1(x dX—Z/ ))?dx f(xk)

Wi

Benefit: then only need to compute n+ 1 weights and function evaluations
instead of expected 2n + 2.
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Gauss quadrature

Given n > 0:

Compute polynomial orthogonal basis ¢g, . .., @nir1 to Ppi1 st deg(éi) = i.
Let {xk}i_o be zeros of ¢,y1 (these are all distinct and in (a, b) by SM Thm
9.4).

Set, as before, Ly =[], (x — x;)/(xk — x;) compute weights Wj and obtain
Gauss rule using n+ 1 quad points by

G,,(a, b) = i ka(Xk)

Error: If w € C(a, b) is positive and integrable and f € C2""2[a, b] for some
n >0, then

b b
1= Goab) < [ wlF(6) = Pl < 22 [Pl
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Composite Gauss rules for setting with w =1

Divide [a, b] into m subintervals [x;_1, x;] with x; = a+ ih,
i=0,1,...,m—1and h=(b—a)/m.

Set
| = Z/ I f(x)dx =~ Z Gn(xi—1,%) =t Gm.p
i=1vXi-1

i=1
Gm,n uses m subintervals with n+ 1 quadrature points over each subinterval.

Example: Composite midpoint rule with m > 1,
Gmo = Go(xi1,%) =h>_ F((xi1 +x7)/2).
i=1 i=1

. n Mani2(b —a) 5, n
Error estimate: f € C*"2[a,b] = |/—Gpo| < (2niZ()!22"+)2h2 2 — O(h?"?)

Comparison: At same computational budget, Newton—Cotes rule achieves
O(h™*1) approx error.

Know: compute/construct G,(a, b) given w and (a, b) and how to estimate error
|l — Gp(a, b)|. In setting w = 1, extension to composite Gauss rule and computing
G-
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Monte Carlo integration

For square integrable f : [0,1]¢ — R9, we approximate

I1(f) :_/[01]@' f(x)dx

by Monte Carlo estimator

Im(f)

[

N
(]
Ja
&

where X1, ..., Xy ~ U([0,1]9) are mutually independent.

By the independence and identical distribution of X; and the linearity of the
expectation operator, we obtain the root-mean square error (RMSE)

£ i= v/l ~ BN = Vo)

where X ~ U([0,1]?). Can further show that

(SUPxe[o,l]d f(x) — i”fxe[o,l]d f(X))2
4

Var[f(X)] = E[(F(X) — E[f(X)])?]] <

35/42



Order of convergence
This yields RMSE

e Var[f(X)] < SUPxefo.1)¢ f(x) — infyepo,1ye £(x)
M vM 2V/M

(last inequality useful when it's difficult to estimate Var[f(X)]).

=0O(M~1/?)

Alternative error bound: By Chebyshev inequalities we obtain for any € > 0 that

Var[f(X)] (Spre[o 1¢ f(x)— i”fxe[o,l]d f(X))2
IE — > < < ’
(|/M(f) /(f)‘ - E) 62M 462M

=0(M™)
Convergence in probabilty: If Var[f(X)] < oo, then for any € > 0,
lim P(|ly(f)—I1(f)] >€) =0.
M— o0
and also possible to show stronger result: P-almost sure convergence

IP’( lim /M(f):/(f)) = 0.

M— o0
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Error control through number of samples

Given € > 0, can ask how large M is needed to ensure that &y <€ ?

Answer: By previous slide, need M so large that

Var[I)\‘”(X)] <@ — M- {Var[efz(X)]-‘ 7

or alternatively (if Var[f(X)] is not computable),

(SUPxe[o,l]d f(x) — infxe[o,1]d f(x))2
4¢2

(SUPxe[o,l]d f(x)4_lv;”fxe[o,1]d f(X))2 < 2 M= ’V

But can also ask, given e > 0 and § € (0,1), how large M is needed to ensure
P(I(F) — 1(F)] = €) < 67
and, by previous slide, determine M by either

(SUPxe[o,l]d f(x) — infxefo,1)¢ f(x))?

Var[f(X)]
— 1 -
%, 4e2M

< 4.
emM - -
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Monte Carlo integration

m Monte Carlo is said to overcome curse of dimensionality in the sense that its
order of convergence for Iy (f) — I(f) does not depend on state-space
dimension d and they do not depend on regularity of f as long as

/ |f(x)|?dx < oc.
[0.1)¢

m This is different from classic quadrature methods, like Newton—Cotes or
Gauss, as they depend both on d and the regularity of f.

m Monte Carlo is often more efficient and flexible than classic quadrature
methods for numerical integration in high dimensions d.

Know: implement Monte Carlo integration for a given square integrable
f o, 1]d — R, estimate number of samples needed to reach error bound, and
know when method is useful.

38/42



Splines |

Piecewise polynomial approximation of f : [a, b] — R over subintervals [x;_1, x;]
with the set of knots

a=x<x1<...<Xn=2b
(Piecewise) linear spline interpolation: s; : [a, b] — R is piecewise linear
function st [[,_, x] € P1 over each interval, so two unkown coefficients per interval.
Spline has 2m equal-to-f-at-knots constraints:

si(xi—=) =f(x;) and s (x+)=f(x) i=1,...,m-1 and s (a) = f(a),

where s;(x—) = lims o s.(x 4+ 0) and s (x+) := limgs 0 s.(x + 9).
Solution: For each interval and x € [x;_1, xi],

Error bound: If f € C?[a, b], then (by error estimates for Lagrange interpolation)

o
max |Su(x) — F(x)| < melatt 70O

x€[a,b] 8

Where h = max,-zlw,}m |X,' — X,',]_‘.
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Natural cubic spline interpolation

Is function s, : [a, b] — R that is piecewise cubic s3|[,_, x] € P3, so four unknown
coefficients per interval.

Spline has 2m equal-to-f-at-knots constraints:
s2(xi—=) = f(xi), s2(xi+)=1f(x) i=1,...,m=1 and s(a)=1f(a), s2(b)="~(b),
2m — 2 smoothig-conditions-at-knots constraints:
ss(xi—) =sp(xi+) sS(xi—)=sy(x+) m=1,...,m-1
and boundary constraints s¥'(a) = 0 and s¥'(b) = 0.

This yields 4m constraints for 4m unknowns and can be solved by writing
o; = sy (x;) and integrating twice
Xi — X X — Xj—1

Sé/(x) = m(f,‘_l + m@', X € [X,'_]_,X,'].

Know: Given f : [a, b] — R compute linear and obtain system of equations for
determining oq, ..., o, for natural cubic splines.
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Existence and uniqueness

Theorem (Existence and uniqueness)
Consider the IVP

y/:f(t’)/) tE[a,b], Y(a):)’OGRd (3)

with f € C([a, b] x RY,RY) Lipschitz in y. Then there exists a unique solution
to (3) with y € C([a, b],RY).

Theorem (Convergence of one-step method)

Consider the IVP (3) with f Lipschitz in y. Let yp,i1 = yn + h®(tn, yn; h) with
h=(b—a)/N and t, = a+ nh, be an explicit one-step method with order of
accuracy p > 1 (for particular IVP). Then it holds that

_ — O(hP).
n:(??l?.).(.,NHyn y(ta)|l = O(hP)

Know: Application above theorems. Compute truncation error, consistency,
global error, order of accuracy for given explicit or implicit Runge—Kutta one-step
method applied to a given/particular IVP.
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Runge—Kutta methods and A-Stability

m Know how to translate to translate Butcher tableau (b, ¢, A) into one-step
method and oppositely, given one-step method (for up to s = 2 stages) into
Butcher tableau.

m For explicit RK methods, know sufficient conditions on (b, ¢, A) to obtain
consistency, and order of accuracy at least p =1 and p = 2.

m For given RK method, be able to compute stability function R(z), region of
absolute stability and determine if method is A-stable or not.

m Be able to compute one or two solution iterations of RK-methods for
higher-dimensional problems.

m Understand strengths and weaknesses of explicit and implicit RK methods
(Key features: stiff problems, stability and computational cost of solution
iterations.)
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