UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in MAT3360 — Introduction to partial differential equations

Day of examination: Friday, June 11, 2021

Examination hours: 09:00 - 13:00

This problem set consists of 7 pages.

Appendices: None.

Permitted aids: Any

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1 (weigth 15%)

Consider the PDE

$$\begin{cases} u_t + (1+x^2)u_x = 0, & t > 0, x \in \mathbb{R}, \\ u(x,0) = \frac{1}{1+x^2}. \end{cases}$$

Find a solution to this initial value problem.

Løsningsforslag: The characteristic equation is

$$x' = (1 + x^2), \quad x(0) = x_0,$$

with solution

$$x_0 = \tan(\arctan(x) - t)$$
.

Hence a solution of the PDE is

$$u(x,t) = \frac{1}{1 + (\tan(\arctan(x) - t))^2}.$$

Problem 2 (weigth 25%)

Consider the function $f: [-1,1] \mapsto \mathbb{R}$ defined by

$$f(x) = \begin{cases} \frac{\sin(\pi x)}{x} & x \neq 0, \\ \pi & x = 0. \end{cases}$$

We have that the full Fourier series of f is given by

$$f(x) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(k\pi x) + b_k \sin(k\pi x).$$

(Continued on page 2.)

2a

Explain why the Fourier series converges uniformly to f for $x \in [-1, 1]$, and converges uniformly to a function g for $x \in \mathbb{R}$. Draw the graph of g for $x \in [-3, 3]$.

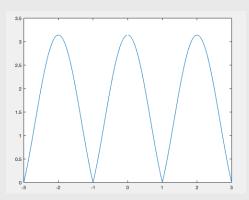
Løsningsforslag: We have that f is continuous on [-1,1], since

$$\lim_{x \to 0} f(x) = \pi.$$

f' is continuous on [-1,1] since

$$f'(0) = \lim_{h \to 0} \frac{f(h) - \pi}{h} = \lim_{h \to 0} \frac{\sin(\pi h) - \pi h}{h^2} = -\frac{\pi^2}{2} = \lim_{x \to 0} f'(x).$$

Hence the Fourier series for f' converges pointwise (to its periodic extension). Then the Fourier series for f will converge uniformly to the periodic extension of f.



2b

Show that $b_k = 0$ and that

$$a_k = \int_{k-1}^{k+1} \frac{\sin(\pi x)}{x} dx, \quad k = 0, 1, 2, 3, \dots$$

Løsningsforslag: $b_k = 0$ since f is even. Then

$$a_k = 2 \int_0^1 \frac{\sin(\pi x) \cos(k\pi x)}{x} dx$$

$$= \int_0^1 \frac{\sin((k+1)\pi x) - \sin((k-1)\pi x)}{x} dx$$

$$= \int_0^{k+1} \frac{\sin(\pi y)}{y} dy - \int_0^{k-1} \frac{\sin(\pi y)}{y} dy$$

$$= \int_{k-1}^{k+1} \frac{\sin(\pi y)}{y} dy.$$

2c

Use the Fourier series of f to calculate the improper integral

$$\int_0^\infty \frac{\sin(\pi x)}{x} \, dx.$$

Løsningsforslag: We know that

$$\pi = f(0) = \lim_{N \to \infty} \frac{a_0}{2} + \sum_{k=1}^{N} a_k$$

$$= \lim_{N \to \infty} \left(\int_0^1 \frac{\sin(\pi x)}{x} \, dx + \sum_{k=1}^{N} \int_{k-1}^{k+1} \frac{\sin(\pi x)}{x} \, dx \right)$$

$$= \int_0^1 \frac{\sin(\pi x)}{x} \, dx + \lim_{N \to \infty} \sum_{k=0}^{N-1} \int_k^{k+1} \frac{\sin(\pi x)}{x} \, dx + \sum_{k=1}^{N} \int_k^{k+1} \frac{\sin(\pi x)}{x} \, dx$$

$$= \lim_{N \to \infty} \int_0^N \frac{\sin(\pi x)}{x} \, dx + \lim_{N \to \infty} \int_0^{N+1} \frac{\sin(\pi x)}{x} \, dx$$

$$= 2 \int_0^\infty \frac{\sin(\pi x)}{x} \, dx.$$

Therefore $\int_0^\infty \frac{\sin(\pi x)}{x} dx = \pi/2$.

Problem 3 (weigth 30%)

Let Q(x) be a function in $C_0^2((0,1))$. For $k = 1, 2, 3, \ldots$ define $X_k(x) = \sin(k\pi x)$.

3a

Define

$$u_N(x,t) = 2 \int_0^t \int_0^1 \sum_{k=1}^N Q(y) X_k(x) X_k(y) e^{-(k\pi)^2 (t-s)} dy ds.$$

Show that u_N is a solution of the boundary value problem

$$\begin{cases} \frac{\partial}{\partial t} u_N - \frac{\partial^2}{\partial x^2} u_N = Q_N & t \in (0, T], \ x \in (0, 1), \\ u_N(0, t) = u_N(1, t) = 0 & t > 0, \\ u_N(x, 0) = 0, \end{cases}$$

where

$$Q_N(x) = 2\sum_{k=1}^{N} X_k(x) \int_0^1 X_k(y) Q(y) \, dy.$$

Løsningsforslag: We calculate

$$\frac{\partial}{\partial t}u_N = 2\int_0^1 \sum_{k=1}^N Q(y)X_k(x)X_k(y) \, dy ds - 2\int_0^t \int_0^1 \sum_{k=1}^N Q(y)X_k(x)X_k(y)(k\pi)^2 e^{-(k\pi)^2(t-s)} \, dy ds$$

and

$$\frac{\partial^2}{\partial x^2} u_N = -2 \int_0^t \int_0^1 \sum_{k=1}^N Q(y)(k\pi)^2 X_k(x) X_k(y) e^{-(k\pi)^2 (t-s)} \, dy ds.$$

Hence u_N satisfies the differential equation. It is easy to see that the initial and boundary conditions are satisfied.

3b

Show that $Q_N \to Q$ uniformly in [0,1].

Løsningsforslag: We recognise Q_N as the partial sum of the Fourier expansion of Q(t)

$$Q_N = \sum_{k=1}^{N} \frac{\langle Q, X_k \rangle}{\|X_k\|^2} X_k.$$

Since $Q \in C_0^2((0,1))$ we know that its Fourier series converges uniformly to Q(x,t).

3c

Assume that there exists a smooth solution u to the problem

$$\begin{cases} \frac{\partial}{\partial t}u - \frac{\partial^2}{\partial x^2}u = Q & t \in (0, T], \ x \in (0, 1), \\ u(0, t) = u(1, t) = 0 & t > 0, \\ u(x, 0) = 0, \end{cases}$$

Set $E(t) = ||u(\cdot, t)||$, where $||\cdot||$ denotes the mean square norm. Show that

$$E(t) \leq t \|Q\|$$

Løsningsforslag: We multiply with u and integrate over x to find

$$\frac{1}{2}\frac{d}{dt} \|u(\cdot,t)\|^2 + \|u_x(\cdot,t)\|^2 = \langle u(\cdot,t), Q \rangle \le \|u(\cdot,t)\| \|Q\|.$$

Hence

$$\frac{d}{dt} \|u(\cdot, t)\| \le \|Q\|.$$

3d

Show that u_N converges in the mean square norm to u as $N \to \infty$.

Løsningsforslag: We get that

$$\frac{\partial}{\partial t} (u - u_N) - \frac{\partial^2}{\partial x^2} (u - u_N) = (Q - Q_N).$$

Multiply this with $(u - u_N)$ and integrate to get

$$\frac{d}{dt} \|u(\cdot, t) - u_N(\cdot, T)\| \le \|Q - Q_N\|_{\infty} t.$$

Hence

$$||u(\cdot,t) - u_N(\cdot,t)|| \le \frac{t^2}{2} ||Q - Q_N||_{\infty} \to 0,$$

as $N \to \infty$.

Problem 4 (weigth 30%)

Consider the transport equation in the periodic setting

$$\begin{cases}
 u_t + u_x = 0, & t > 0, \ x \in [0, 1], \\
 u(0, t) = u(1, t) \\
 u(x, 0) = f(x),
\end{cases}$$
(1)

where f is a given smooth periodic function with period 1. Consider also the difference scheme

$$L_{\Delta x}v_j^m := \frac{v_j^{m+1} - \frac{1}{2}(v_{j+1}^m + v_{j-1}^m)}{\Delta t} + \frac{v_{j+1}^m - v_{j-1}^m}{2\Delta x} = 0, \ m \ge 0, \ j = 0, 1, \dots, N,$$

and $v_{-1}^m = v_N^m$, $v_{N+1}^m = v_0^m$. The initial values are given by

$$v_j^0 = f(x_j).$$

Here Δt is a small positive number, $\Delta x = 1/(N+1)$ and $x_j = j\Delta x$. We also define $t^m = m\Delta t$. The scheme is explicit since we can solve for v_j^{m+1} ,

$$v_{j}^{m+1} = \frac{1}{2} (1-r) v_{j+1}^{m} + \frac{1}{2} (1+r) v_{j-1}^{m},$$

with $r = \Delta t / \Delta x$.

4a

Find a condition on r which guarantees that

$$\min_{j} v_{j}^{m} \le v_{j}^{m+1} \le \max_{j} v_{j}^{m}$$

for $m \geq 0$.

(Continued on page 6.)

Løsningsforslag: If $0 < r \le 1$ then v_j^{m+1} is a convex combination of $v_{j\pm 1}^m$ and therefore

$$\min_{j} v_{j}^{m} \leq \min \left\{ v_{j-1}^{m}, v_{j+1}^{m} \right\} \leq v_{j}^{m+1} \leq \max \left\{ v_{j-1}^{m}, v_{j+1}^{m} \right\} \leq \max_{j} v_{j}^{m}.$$

Assume from now on that r satisfies this condition.

4b

Assume that w_j^m solves

$$L_{\Delta x} w_j^m = g_j^m$$

for $m\geq 0$ and $j=0,\ldots,N$ with periodic boundary conditions $w_{-1}^m=w_N^m,$ $w_{N+1}^m=w_0^m.$ Here g_j^m is a given grid function. We assume that $w_j^0=0$ for all j. Show that

$$\max_{j=0,\dots,N} \left| w_j^m \right| \le m \Delta t \max_{\substack{j=0,\dots,N \\ k=0,\dots,m-1}} \left| g_j^k \right|.$$

Løsningsforslag: For m=0 the estimate holds. Assume that it holds for m, then

$$\begin{split} \left| w_{j}^{m+1} \right| & \leq \left| \frac{1}{2} \left(1 - r \right) w_{j+1}^{m} + \frac{1}{2} \left(1 + r \right) w_{j-1}^{m} \right| + \Delta t \left| g_{j}^{m} \right| \\ & \leq \max_{j=0,\dots,N} \left| w_{j}^{m} \right| + \Delta t \left| g_{j}^{m} \right| \\ & \leq m \Delta t \max_{\substack{j=0,\dots,N \\ k=0,\dots,m-1}} \left| g_{j}^{k} \right| + \max_{j=0,\dots,N} \left| g_{j}^{m} \right| \\ & \leq (m+1) \Delta t \max_{\substack{j=0,\dots,N \\ k=0,\dots,m}} \left| g_{j}^{k} \right|. \end{split}$$

4c

Let u be a smooth solution of (1), show that

$$L_{\Delta x}u(x_i, t^m) = \mathcal{O}(\Delta x),$$

and use this to obtain a bound of the error

$$\max_{j=0,\dots,N} \left| v_j^m - u(x_j, t^m) \right|.$$

Løsningsforslag: We have that (with $u_j^m = u(x_j, t^m)$)

$$\begin{split} u_j^m &= \frac{1}{2} \left(u_{j+1}^m + u_{j-1}^m \right) + \mathcal{O}(\Delta x^2), \\ u_t(x_j, t^m) &= \frac{1}{\Delta t} \left(u_j^{m+1} - u_j^m \right) + \mathcal{O}(\Delta t) \\ &= \frac{1}{\Delta t} \left(u_j^{m+1} - \frac{1}{2} \left(u_{j+1}^m + u_{j-1}^m \right) + \mathcal{O}(\Delta x^2) \right) + \mathcal{O}(\Delta t), \\ u_x(x_j, t^m) &= \frac{1}{2\Delta x} \left(u_{j+1}^m - u_{j-1}^m \right) + \mathcal{O}(\Delta x^2). \end{split}$$

Since $\Delta t = r\Delta x$, $\mathcal{O}(\Delta x) = \mathcal{O}(\Delta t)$, using the above we find that

$$L_{\Delta x}u_i^m = u_t + u_x + \mathcal{O}(\Delta x).$$

Define $e_j^m = u_j^m - v_j^m$, we find that

$$\begin{cases} L_{\Delta x} e_j^m = \mathcal{O}(\Delta x), \\ e_j^0 = 0. \end{cases}$$

By **b**), we get

$$\max_{j} \left| e_{j}^{m} \right| \le t^{m} \mathcal{O}(\Delta x).$$

THE END