For $\beta>0$, the general solution fo the ODE

$$
\begin{equation*}
u^{\prime \prime}(x)=-\beta^{2} u(x) \quad x \in[0,1] \tag{1}
\end{equation*}
$$

is $u(x)=c_{1} \sin (\beta x)+c_{2} \cos (\beta x)$
Proof
Let $v_{1}(x):=U(x)$ and

$$
V_{2}(x):=U^{\prime}(x)
$$

and write $V(x)=\left[\begin{array}{l}V_{1}(x) \\ V_{z} x\end{array}\right]$.
Then $v_{1}^{\prime}=u^{\prime}=v_{2}$
\& $\quad v_{2}^{\prime}=u^{\prime \prime}=-\beta^{2} u=-\beta^{2} v_{1}$

$$
\Rightarrow \quad V^{\prime}=\underbrace{\left[\begin{array}{cc}
0 & 1 \\
-\beta^{2} & 0 \tag{x}
\end{array}\right]}_{=: A} V
$$

(where $V^{\prime}=\left[\begin{array}{l}v_{1}^{\prime} \\ v_{2}^{\prime}\end{array}\right]$).

Diagonalization of $A=$
$A=\left[\begin{array}{cc}0 & 1 \\ -\beta^{2} & 0\end{array}\right]$ has eigrals

$$
\left.\lambda_{1}=i \beta \quad \lambda_{2}=-i \beta\right)
$$

with eigenvectors

$$
W_{1}=\left[\begin{array}{c}
-i \\
\beta
\end{array}\right] \quad W_{2}=\left[\begin{array}{l}
i \\
\beta
\end{array}\right]
$$

The matrix
$W=\left[\begin{array}{cc}-i & i \\ \beta & \beta\end{array}\right]$ is invertible

$$
\begin{aligned}
& \left(w^{-1}=\frac{1}{2 i \beta}\left[\begin{array}{cc}
-\beta & i \\
\beta & i
\end{array}\right]\right) \text { and } \\
& \begin{aligned}
& A W=\left[\begin{array}{ll}
A w_{1} & A w_{2}
\end{array}\right] \stackrel{(* *)}{=}\left[\begin{array}{ll}
\lambda_{1} w_{1} & \lambda_{2} w_{2}
\end{array}\right] \\
&=W \underbrace{\left[\begin{array}{ll}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]}_{=: \Omega}
\end{aligned}
\end{aligned}
$$

Multiply from right with W^{-1} in

$$
\begin{aligned}
A W & =W \Omega \quad \mid \cdot W^{-1} \\
\Rightarrow \quad A & =W \Omega W^{-1}
\end{aligned}
$$

(so A is diagonalizable).
Returning to ODE (*)

$$
\begin{aligned}
v^{\prime} & =A v \\
\Rightarrow w^{-1} v^{\prime} & =\Lambda w^{-1} v(* * *)
\end{aligned}
$$

Set

$$
\widetilde{V}(x):=W^{-1} V(x)=W^{-1}\left[\begin{array}{l}
V_{1}(x) \\
V_{2}(x)
\end{array}\right] \text {. }
$$

Then, since $\frac{d}{d x} \tilde{v}=w^{-1} v^{\prime}$

$$
\widetilde{V}^{\prime}=\Lambda \widetilde{V}=\left[\begin{array}{ll}
\lambda_{1} & \widetilde{v}_{1} \\
\lambda_{2} & \widetilde{v}_{2}
\end{array}\right]
$$

with general complex-valued

$$
\begin{aligned}
& \widetilde{V}_{1}(x)=e^{i \beta x}{\widetilde{C_{1}}}^{-i \beta x} \widetilde{V_{2}} \quad, \widetilde{c_{1}}, \widetilde{c_{2}} \in \mathbb{C},
\end{aligned}
$$

(since you can solve ODE components individually).
And

$$
\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=W\left[\begin{array}{l}
\tilde{v}_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
-i \tilde{c}_{1} e^{i \beta x}+i \tilde{c}_{2} e^{-i \beta x} \\
\beta \tilde{c}_{1} e^{i \beta x}+\beta \tilde{c}_{2} e^{-i \beta x}
\end{array}\right]
$$

Recalling that
$V_{1}(x)=U(x)$ the general complex-valucel solution to (1) is

$$
u(x)=\left(-i \widetilde{c}_{1}+i \widetilde{c}_{2}\right) \cos (\beta x)+\left(\widetilde{c}_{1}+\tilde{c}_{2}\right) \sin (\beta x)
$$

where $\tilde{C}_{1}, \tilde{C}_{2} \in \mathbb{C}_{0}$

$$
\text { Set } \begin{aligned}
c_{1} & =\operatorname{real}\left(i\left(\tilde{c_{2}}-\tilde{c}_{1}\right)\right) \\
& =\operatorname{imag}\left(\widetilde{c_{1}}-\tilde{c}_{2}\right) \\
\& \quad c_{2} & =\operatorname{real}\left(\widetilde{c_{1}}+\widetilde{c_{2}}\right)
\end{aligned}
$$

(choosing e.g. $\widetilde{c}_{2}=0$ and \widetilde{C}_{1} any value in \mathbb{C}, if is clear that the associabed $\left(C_{1}, C_{2}\right)$ can take any value in \mathbb{R}^{2}.)
So general veal-valued solution to the ODE (1) becomes

$$
\begin{gathered}
U(x)=c_{1} \cos (\beta x)+c_{2} \sin (\beta x) \\
c_{1}, c_{2} \in \mathbb{R} .
\end{gathered}
$$

