MAT 3360: Exam, spring 2020

Deadline: Friday June 12th., 14:30
You must hand in one (and only one) (.pdf) file. Passing requires a score of at least 40% where each question (a), b) etc.) counts 10%.

Question 1. Set

$$
f(x)=x\left(1-x^{2}\right)
$$

a) Find the Fourier sine series of f in the interval $[0,1]$.
b) Denote the sum of the Fourier series by $S(x)$. Sketch the graph of S for $x \in[-2,2]$.
c) Show that

$$
\pi^{6}=945 \sum_{k=1}^{\infty} \frac{1}{k^{6}}
$$

Question 2. Consider the initial value problem

$$
\left\{\begin{array}{l}
u_{t}+\cos ^{2}(x) u_{x}=0, \quad t>0, \quad x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \tag{1}\\
u(x, 0)=f(x)
\end{array}\right.
$$

where f is a known continuously differentiable function. We assume that u is continuously differentiable (both in x and t) function.
a) Set

$$
E(t)=\frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(u(x, t))^{2} d x
$$

Show that $E^{\prime}(t) \leq 2 E(t)$ and therefore that $E(t) \leq E(0) e^{2 t}$.
b) Explain why a) implies that (1) has a most one continuously differentiable solution.
c) Use the method of characteristics to find a formula for the solution of (1) for a given function f.

Question 3. Consider the boundary value problem

$$
\left\{\begin{array}{l}
\Delta u=0, \quad 1<r<2 \tag{2}\\
u(1, \theta)=0, \quad u(2, \theta)=\sin (\theta)
\end{array}\right.
$$

Here (r, θ) denote polar coordinates and the Laplace operator Δ is given by

$$
\Delta u=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}
$$

You shall not show this.
a) Use separation of variable to find the solution $u(r, \theta)$.
b) Find the solution to the boundary value problem

$$
\left\{\begin{array}{l}
\Delta v=0, \quad 1<r<2 \tag{3}\\
v(1, \theta)=\cos (2 \theta), \quad v(2, \theta)=0
\end{array}\right.
$$

c) Solve the boundary value problem

$$
\left\{\begin{array}{l}
\Delta w=0, \quad 1<r<2 \tag{4}\\
w(1, \theta)=\cos (2 \theta), \quad w(2, \theta)=\sin (\theta)
\end{array}\right.
$$

Question 4. We shall consider the Crank-Nicholson scheme for the heat equation

$$
\left\{\begin{array}{l}
u_{t}=u_{x x}, t>0, x \in(0,1), \\
u(0, t)=u(1, t)=0, t>0 \\
u(x, 0)=f(x)
\end{array}\right.
$$

This scheme can be re-written

$$
\frac{v_{j}^{m+1}-v_{j}^{m}}{\Delta t}-\frac{1}{\Delta x^{2}} D^{+} D^{-} v_{j}^{m+1 / 2}=0, \quad j=1, \ldots, n
$$

with $v_{0}^{m}=v_{n+1}^{m}=0$, where $\Delta x=1 /(n+1)$ and

$$
v_{j}^{m+1 / 2}:=\frac{1}{2}\left(v_{j}^{m+1}+v_{j}^{m}\right),
$$

and the differences D^{+}and D^{-}are defined as

$$
D^{+} a_{j}=a_{j+1}-a_{j}, \quad D^{-} a_{j}=a_{j}-a_{j-1} .
$$

Define the discrete energy E^{m} by

$$
E^{m}=\frac{1}{2} \Delta x \sum_{j=1}^{n}\left(v_{j}^{m}\right)^{2} .
$$

Show that $E^{m+1} \leq E^{m}$ for $m \geq 0$. (Hint: Multiply scheme with $v_{j}^{m+1 / 2}$ and sum over j.)

