UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in: MAT3360 - Introduction to partial differential equations
Day of examination: Wednesday, August 18, 2021
Examination hours: 09:00-13:00
This problem set consists of 6 pages.

Appendices:
Permitted aids:

None.
Any

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1 (weight 10\%)

Consider the PDE

$$
\left\{\begin{array}{l}
u_{t}+\tan (x) u_{x}=0, \quad t>0, \quad x \in \mathbb{R} \\
u(x, 0)=\sin (x)
\end{array}\right.
$$

Find a solution to this initial value problem.

Løsningsforslag: The characteristic equation is

$$
x^{\prime}=\tan (x), \quad x(0)=x_{0},
$$

with solution

$$
x_{0}=\sin ^{-1}\left(e^{-t} \sin (x)\right)
$$

Hence a solution of the PDE is

$$
u(x, t)=u\left(x_{0}, 0\right)=e^{-t} \sin (x) .
$$

Problem 2

Consider the function $f:[0,1] \rightarrow \mathbb{R}$ defined by yes

$$
f(x)= \begin{cases}x & x \in[0,1 / 2) \\ 1-x & x \in[1 / 2,1]\end{cases}
$$

2a (weight 10\%)
Find the Fourier sine series of f.

Løsningsforslag: For $k=1,2,3, \ldots$

$$
\begin{aligned}
b_{k}= & 2 \int_{0}^{1 / 2} x \sin (k \pi x) d x+2 \int_{1 / 2}^{1}(1-x) \sin (k \pi x) d x \\
= & -\left.2 x \frac{1}{k \pi} \cos (k \pi x)\right|_{0} ^{1 / 2}+\frac{2}{k \pi} \int_{0}^{1 / 2} \cos (k \pi x) d x \\
& -\left.2(1-x) \frac{1}{k \pi} \cos (k \pi x)\right|_{1 / 2} ^{1}-\frac{2}{k \pi} \int_{1 / 2}^{1} \cos (k \pi x) d x \\
= & -\frac{1}{k \pi} \cos \left(k \frac{\pi}{2}\right)+\frac{2}{(k \pi)^{2}} \sin \left(k \frac{\pi}{2}\right) \\
& +\frac{1}{k \pi} \cos \left(k \frac{\pi}{2}\right)+\frac{2}{(k \pi)^{2}} \sin \left(k \frac{\pi}{2}\right) \\
= & \frac{4}{(k \pi)^{2}} \sin \left(k \frac{\pi}{2}\right) \\
= & \frac{4}{(k \pi)^{2}} \begin{cases}0 & k \text { even } \\
(-1)^{\frac{k-1}{2}} & k \text { odd }\end{cases}
\end{aligned}
$$

Hence the sine series reads

$$
f(x) \sim \sum_{k} b_{k} \sin (k \pi x)=\frac{4}{\pi^{2}} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{2}} \sin ((2 k+1) \pi x)
$$

2b (weight 10%)

Use the above sine series to calculate

$$
\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{4}}
$$

Løsningsforslag: The function f is continuous on $[0,1]$, hence Parsival's equality holds

$$
\frac{1}{12}=\int_{0}^{1} f^{2}(x) d x=\frac{16}{\pi^{4}} \sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{4}} \frac{1}{2}
$$

Rearranging we get

$$
\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{4}}=\frac{\pi^{4}}{96} \approx 1.02
$$

2c (weight 10%)

Explain why the Fourier sine series of f converges uniformly to a function g for all $x \in \mathbb{R}$ and sketch the graph of g for $x \in[-2,2]$.

Løsningsforslag: The odd extension of f is continuous and its derivative is piecewise continuous, therefore the sine series converges uniformly to the odd periodic extension of f. The graph of g looks like this:

Problem 3

Consider the wave equation

$$
\left\{\begin{array}{l}
u_{t t}-u_{x x}=-u, x \in(0,1), t>0 \tag{1}\\
u(0, t)=u(1, t)=0, t>0 \\
u(x, 0)=f(x), u_{t}(x, 0)=g(x), x \in(0,1)
\end{array}\right.
$$

where f and g are given smooth functions.

3a (weight 10%)

Find a formal solution of (1).

Løsningsforslag: We write $u=X T$, where $X \in C_{0}^{2}((0,1))$ and find that

$$
\frac{T^{\prime \prime}}{T}=\frac{X^{\prime \prime}}{X}-1=\lambda
$$

Therefore

$$
X^{\prime \prime}=(\lambda+1) X
$$

which implies that $\lambda+1=-(k \pi)^{2}$ and $X=X_{k}(x)=\sin (k \pi x)$ for $k=1,2,3, \ldots$ This then implies that

$$
T=T_{k}(t)=a_{k} \cos \left(\sqrt{k^{2} \pi^{2}+1} t\right)+b_{k} \sin \left(\sqrt{k^{2} \pi^{2}+1} t\right)
$$

where a_{k} and b_{k} are constants. Since the equation is linear (and we are formal) infinite linear combinations of solutions are solutions, and we have

$$
u(x, t)=\sum_{k=1}^{\infty}\left(a_{k} \cos \left(\sqrt{k^{2} \pi^{2}+1} t\right)+b_{k} \sin \left(\sqrt{k^{2} \pi^{2}+1} t\right)\right) \sin (k \pi x)
$$

We find the constants from the Fourier expansions of f and g, viz.

$$
\begin{aligned}
& a_{k}=2 \int_{0}^{1} f(x) \sin (k \pi x) d x \\
& b_{k}=\frac{2}{\sqrt{k^{2} \pi^{2}+1}} \int_{0}^{1} g(x) \sin (k \pi x) d x
\end{aligned}
$$

3b (weight 10%)

Let u be a smooth solution of (1) and define the "energy"

$$
E(t)=\frac{1}{2} \int_{0}^{1} u^{2}+\left(u_{t}\right)^{2}+\left(u_{x}\right)^{2} d x
$$

Prove that $E(t)=E(0)$.

Løsningsforslag: We differentiate

$$
\begin{aligned}
E^{\prime}(t) & =\int_{0}^{1} u u_{t}+u_{t} u_{t t}+u_{x} u_{t x} d x \\
& =\int_{0}^{1} u u_{t}+u_{t} u_{t t}-u_{x x} u_{t} d x=0
\end{aligned}
$$

where we integrated by parts and used the equation.

3c (weight 10\%)

Show that (1) can have at most one smooth solution.

Løsningsforslag: The difference between two solutions will satisfy (1) with $f=g=0$, so that $E(t)=0$ for all t. Hence the difference is zero.

Problem 4

Let B denote the unit disc in \mathbb{R}^{2}

$$
B=\left\{(x, y) \mid x^{2}+y^{2}<1\right\}
$$

with boundary

$$
\partial B=\left\{(x, y) \mid x^{2}+y^{2}=1\right\}
$$

Consider the differential operator

$$
L[u]=\Delta u+u_{x}+u_{y}
$$

acting on functions in $C^{2}(\bar{B})$ where \bar{B} denotes the closure of B.

4a (weight 10%)

Let v be a function in $C^{2}(\bar{B})$ such that

$$
L[v](x, y)>0 \text { for }(x, y) \text { in } B
$$

Show that

$$
v(x, y) \leq \max _{(z, w) \in \partial B} v(z, w) \text { for all }(x, y) \text { in } B
$$

Løsningsforslag: Assume that we have a maximum at $\left(x_{0}, y_{0}\right) \in B$, then

$$
\Delta v\left(x_{0}, y_{0}\right) \leq 0, v_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right)=0
$$

We get the contradiction

$$
0<L[v]\left(x_{0}, y_{0}\right)=\Delta v\left(x_{0}, y_{0}\right)+v_{x}\left(x_{0}, y_{0}\right)+v_{y}\left(x_{0}, y_{0}\right) \leq 0
$$

Hence the maxima of v on \bar{B} must be on ∂B.

4b (weight 10%)

Define

$$
h(x, y)=e^{x^{2}+y^{2}}
$$

Show that $L[h](x, y)>0$ for $(x, y) \in B$.

Løsningsforslag:

$$
\begin{aligned}
L[h](x, y) & =h(x, y)\left(4+4\left(x^{2}+y^{2}\right)\right)+2 h(x, y)(x+y) \\
& =h(x, y)\left(2+(1+x)^{2}+(1+y)^{2}+3 x^{2}+3 y^{2}\right)>2
\end{aligned}
$$

for $(x, y) \in B$.

4c (weight 10%)

Let u be a smooth solution to the boundary value problem

$$
\left\{\begin{array}{l}
L[u](x, y)=0, \quad(x, y) \in B \\
u(x, y)=g(x, y), \quad(x, y) \in \partial B
\end{array}\right.
$$

where g is a given twice continuously differentiable function. Show that

$$
\min _{(z, w) \in \partial B} g(z, w) \leq u(x, y) \leq \max _{(z, w) \in \partial B} g(z, w)
$$

for $(x, y) \in B$.

Løsningsforslag: Define $v_{\varepsilon}=u+\varepsilon h$ for $\varepsilon>0$, then $L\left[v_{\varepsilon}\right]=L[u]+\varepsilon L[h]>0$. By a), $U+\varepsilon h=v_{\varepsilon} \leq \max _{\partial B} g+\varepsilon e$. Letting $\varepsilon \rightarrow 0$ gives the right inequality. Similarly to a), we find that if $L[v]<0, v(x, y)>\min _{\partial B} v$ for $(x, y) \in B$. Then we can define $v_{\varepsilon}=u-\varepsilon h$ and proceed analogously to prove the left inequality.

