UNIVERSITY OF OSLO
 Faculty of mathematics and natural sciences

Exam in:
MAT3360 - Introduction to partial differential equations
Day of examination: Wednesday 14 june 2023
Examination hours: 09:00-13:00
This problem set consists of 3 pages.
Appendices: None
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1 (weight 10\%)

Solve the following initial value problem

$$
\begin{array}{rlrl}
u_{t}(x, t)+\frac{x}{1+t^{2}} u_{x}(x, t) & =1 & x \in \mathbb{R}, \quad t>0 \\
u(x, 0) & =\phi(x) & x \in \mathbb{R}, &
\end{array}
$$

where $\phi \in C^{1}(\mathbb{R})$ is a given function.

Problem 2

We consider the boundary value problem

$$
\left.\begin{array}{rlrl}
-u^{\prime \prime}(x)+\alpha u(x) e^{-u^{2}(x) / 2} & =f(x) & x \in(0,1) \tag{1}\\
u(0) & =u(1)=0 &
\end{array}\right\}
$$

where we are given a constant $\alpha \geq 0$ and a function $f \in C^{2}([0,1])$, and we seek a solution $u \in C_{0}^{2}((0,1))$. Let us recall that $C_{0}^{2}((0,1)):=$ $C^{2}((0,1)) \cap C([0,1])$.

2a (weight 10\%)
Let L be the operator defined by

$$
\begin{equation*}
(L u)(x):=-u^{\prime \prime}(x)+\alpha u(x) \exp \left(-u^{2}(x) / 2\right) . \tag{2}
\end{equation*}
$$

Show that L is positive definite on $C_{0}^{2}((0,1))$ for any $\alpha \geq 0$.
2b (weight 10\%)
Describe differential equation's order, if it is homogeneous or nonhomogeneous, and its type of boundary conditions. Motivate your answers.

Furthemore, use a mathematical argument to determine if the differential equation is linear or nonlinear for different values of $\alpha \geq 0$.
(Continued on page 2.)

2c (weight 10\%)

Explain why the boundary value problem (1) with $\alpha=0$ has at most one solution in $C_{0}^{2}((0,1))$.

2d (weight 10\%)

Show that if $f(x)>\alpha \exp (-1 / 2)$ for all $x \in[0,1]$ and $u \in C_{0}^{2}((0,1))$ is a solution of (1), then the solution satisfies that

$$
\min _{x \in[0,1]} u(x)=0
$$

(Hint: Use that $x \exp ^{-x^{2} / 2} \leq e^{-1 / 2}$ for all $x \in \mathbb{R}$.)

2e (weight 10\%)
We now consider (1) with $\alpha=1$.
Describe a numerical method with uniform stepsize $h=\frac{1}{n+1}$ for solving the boundary value problem (1), such that your resulting system of equations can be written on the form

$$
\left(L_{h} v\right)\left(x_{i}\right)=f\left(x_{i}\right) \quad i=1,2, \ldots, n
$$

for an operator L_{h} on the set of discrete functions $D_{h, 0}$.
Let $f \in C^{2}([0,1])$ be such that there exists a unique solution $u \in$ $C_{0}^{2}((0,1))$ to the boundary value problem (1). Define the truncation error τ_{h} for your numerical method and derive an upper bound for $\left\|\tau_{h}\right\|_{h, \infty}=$ $\max _{i=1, \ldots, n}\left|\tau_{h}\left(x_{i}\right)\right|$. You may use that the fourth derivative of u satisfies

$$
\begin{equation*}
\left\|u^{(4)}\right\|_{\infty} \leq\left\|f^{\prime \prime}\right\|_{\infty}+5\|f\|_{\infty}^{2}+1=: C_{f} \tag{3}
\end{equation*}
$$

(you do not need to prove (3)).

Problem 3

We consider the partial differential equation

$$
\begin{align*}
u_{t} & =u_{x x}-2 u & & x \in(0,1), \quad t>0 \tag{4}\\
u_{x}(0, t) & =0, \quad u(1, t)=0 & & t \geq 0 \tag{5}\\
u(x, 0) & =f(x) & & x \in(0,1) \tag{6}
\end{align*}
$$

where $f \in C([0,1])$ is a given function.

3a (weight 10\%)

Show that the PDE (4)-(6) at most has one smooth solution.
(Hint: Consider the energy function $E(t)=\int_{0}^{1} u^{2}(x, t) d x$.)

3b (weight 10\%)

Compute a family of particular solutions to (4)-(5).
(Continued on page 3.)

3c (weight 10\%)
Describe the formal solution to (4)-(6). If you have not computed the particular solutions in Problem 3b, then you can describe the formal solution given a family of particular solutions $u_{k}(x, t)=T_{k}(t) X_{k}(x)$ for $k=0,1, \ldots$.

Thereafter, determine the solution in the case when $f(x)=\cos (\pi x / 2)-$ $3 \cos (9 \pi x / 2)$.

Problem 4 (weight 10\%)

What can you say about the regularity and the periodic properties of the function

$$
f(x)=\sum_{k=1}^{\infty} \frac{1}{2 \exp (\pi)(4 k-1)^{11 / 3}} \cos ((4 k-1) \pi x) \quad ?
$$

THE END

