UNIVERSITY OF OSLO
 Faculty of mathematics and natural sciences

Exam in:
MAT3360 - Introduction to partial differential equations
Day of examination: Wednesday 14 june 2023
Examination hours: 09:00-13:00
This problem set consists of 6 pages.
Appendices: None
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1 (weight 10\%)

Solve the following initial value problem

$$
\begin{array}{rlrl}
u_{t}(x, t)+\frac{x}{1+t^{2}} u_{x}(x, t) & =1 & x \in \mathbb{R}, \quad t>0 \\
u(x, 0) & =\phi(x) & x \in \mathbb{R}, &
\end{array}
$$

where $\phi \in C^{1}(\mathbb{R})$ is a given function.

Solution suggestion: The characteristic equation $x^{\prime}=x /\left(1+t^{2}\right)$ has solution

$$
x(t)=x_{0} \exp (\arctan (t)) \quad \text { and } \quad x_{0}(x, t)=x \exp (-\arctan (t))
$$

Integrating $\frac{d}{d t} u(x(t), t)=1$, we obtain the solution

$$
u(x, t)=u\left(x_{0}(x, t), 0\right)+t=\phi\left(x e^{-\arctan (t)}\right)+t
$$

Problem 2

We consider the boundary value problem

$$
\left.\begin{array}{rlr}
-u^{\prime \prime}(x)+\alpha u(x) e^{-u^{2}(x) / 2} & =f(x) & x \in(0,1) \tag{1}\\
u(0) & =u(1)=0 &
\end{array}\right\}
$$

where we are given a constant $\alpha \geq 0$ and a function $f \in C^{2}([0,1])$, and we seek a solution $u \in C_{0}^{2}((0,1))$. Let us recall that $C_{0}^{2}((0,1)):=$ $C^{2}((0,1)) \cap C([0,1])$.

2a (weight 10\%)

Let L be the operator defined by

$$
\begin{equation*}
(L u)(x):=-u^{\prime \prime}(x)+\alpha u(x) \exp \left(-u^{2}(x) / 2\right) . \tag{2}
\end{equation*}
$$

Show that L is positive definite on $C_{0}^{2}((0,1))$ for any $\alpha \geq 0$.
Solution suggestion: For every $u \in C_{0}^{2}((0,1))$, integration by parts yields

$$
\begin{aligned}
\langle L u, u\rangle & =\int_{0}^{1}-u^{\prime \prime}(x) u(x) d x+\alpha \int_{0}^{1} u^{2}(x) \exp \left(-u^{2}(x) / 2\right) d x \\
& =\left[-u^{\prime} u\right]_{0}^{1}+\int_{0}^{1}\left(u^{\prime}(x)\right)^{2} d x+\alpha \int_{0}^{1} u^{2}(x) \exp \left(-u^{2}(x) / 2\right) d x \\
& \geq \int_{0}^{1}\left(u^{\prime}(x)\right)^{2} d x \geq 0 .
\end{aligned}
$$

Moreover,

$$
\langle L u, u\rangle=0 \Longleftrightarrow u^{\prime} \equiv 0 \Longleftrightarrow \underbrace{u(x)=u(0)+\int_{0}^{x} u^{\prime}(s) d s=0 \quad \forall x \in[0,1]}_{\text {meaning } u \equiv 0}
$$

2b (weight 10\%)

Describe differential equation's order, if it is homogeneous or nonhomogeneous, and its type of boundary conditions. Motivate your answers.

Furthemore, use a mathematical argument to determine if the differential equation is linear or nonlinear for different values of $\alpha \geq 0$.

Solution suggestion: The equation is second order, since the highest order of derivative is second order. It is non-homogeneous whenever its righthandside $f(x)$ not is the zero-function. And the boundary conditions are Dirichlet, since they describe the values of the solution itself on the boundary.
And for $\alpha=0$, the operator $L u=-u^{\prime \prime}$ is linear, since for all $\alpha, \beta \in \mathbb{R}$ and $u, v \in C^{2}(0,1)$,

$$
L(\alpha u+\beta v)=-(\alpha u+\beta v)^{\prime \prime}=\alpha\left(-u^{\prime \prime}\right)+\beta\left(-v^{\prime \prime}\right)=\alpha L(u)+\beta L(v) .
$$

For $\alpha>0$, the operator is nonlinear, as for the function $u, v=1$ which belongs to $C^{2}(0,1)$, we have that

$$
\begin{aligned}
& L(u+v)=-(u+v)^{\prime \prime}+\alpha(u+v) \exp \left(-(u+v)^{2} / 2\right)=2 \alpha \exp (-2) \neq L(u)+L(v) \\
& \quad \text { since } \\
& L(u)+L(v)=-u^{\prime \prime}+\alpha u \exp \left(-u^{2} / 2\right)+\left(-v^{\prime \prime}\right)+\alpha v \exp \left(-v^{2} / 2\right)=2 \alpha \exp \left(-\frac{1}{2}\right) .
\end{aligned}
$$

2c (weight 10\%)

Explain why the boundary value problem (1) with $\alpha=0$ has at most one solution in $C_{0}^{2}((0,1))$.

Solution suggestion: When $\alpha=0$, assume that $u, v \in C_{0}^{2}((0,1))$ both are solutions of the equation. Then, since L is linear, the function $(u-v) \in C_{0}^{2}((0,1))$ solves the homogeneous boundary value problem $L(u-v)=0$ with $(u-v)(0)=(u-v)(1)=0$. By the positive definiteness of L on C_{0}^{2} we obtain that

$$
\langle L(u-v), u-v\rangle=0 \Longrightarrow u \equiv v,
$$

hence the solution is unique.

2d (weight 10\%)

Show that if $f(x)>\alpha \exp (-1 / 2)$ for all $x \in[0,1]$ and $u \in C_{0}^{2}((0,1))$ is a solution of (1), then the solution satisfies that

$$
\min _{x \in[0,1]} u(x)=0 .
$$

(Hint: Use that $x \exp ^{-x^{2} / 2} \leq e^{-1 / 2}$ for all $x \in \mathbb{R}$.)
Solution suggestion: Using the hint, we have that

$$
-u^{\prime \prime}(x)=f(x)-\alpha u(x) e^{-u^{2}(x) / 2} \geq f(x)-\alpha e^{-1 / 2}>0 \quad \forall x \in(0,1)
$$

This means that u is strictly superharmonic on $(0,1): u^{\prime \prime}<0$, and the result follows by a maximum principle: Suppose u has a local minimum in an interior point $x_{0} \in(0,1)$. Then it must hold that $u^{\prime \prime}\left(x_{0}\right) \geq 0$, which is contradicted by $u^{\prime \prime}<0$. So u has no interior minima and

$$
\min _{x \in[0,1]} u(x)=\min (u(0), u(1))=0 .
$$

2e (weight 10\%)
We now consider (1) with $\alpha=1$.
Describe a numerical method with uniform stepsize $h=\frac{1}{n+1}$ for solving the boundary value problem (1), such that your resulting system of equations can be written on the form

$$
\left(L_{h} v\right)\left(x_{i}\right)=f\left(x_{i}\right) \quad i=1,2, \ldots, n
$$

for an operator L_{h} on the set of discrete functions $D_{h, 0}$.
Let $f \in C^{2}([0,1])$ be such that there exists a unique solution $u \in$ $C_{0}^{2}((0,1))$ to the boundary value problem (1). Define the truncation error
τ_{h} for your numerical method and derive an upper bound for $\left\|\tau_{h}\right\|_{h, \infty}=$ $\max _{i=1, \ldots, n}\left|\tau_{h}\left(x_{i}\right)\right|$. You may use that the fourth derivative of u satisfies

$$
\begin{equation*}
\left\|u^{(4)}\right\|_{\infty} \leq\left\|f^{\prime \prime}\right\|_{\infty}+5\|f\|_{\infty}^{2}+1=: C_{f} \tag{3}
\end{equation*}
$$

(you do not need to prove (3)).
Solution suggestion: Let $h=1 /(n+1), x_{i}=i h$ and $v_{i}=v\left(x_{i}\right) \approx$ $u\left(x_{i}\right)$ for $i=0,1, \ldots, n+1$ be the solution of the following system of equations: $v_{0}=v_{n+1}=0$ and

$$
\underbrace{\frac{-v_{i-1}+2 v_{i}-v_{i+1}}{h^{2}}+v_{i} e^{-v_{i}^{2} / 2}}_{=\left(L_{h} v\right)\left(x_{i}\right)}=f\left(x_{i}\right) \quad i=1,2, \ldots, n
$$

Then the truncation error is the vector given by

$$
\left.\tau_{h}\left(x_{i}\right)=\left(L_{h} u\right)\left(x_{i}\right)-f\left(x_{i}\right)=\frac{-u\left(x_{i-1}\right)+2 u\left(x_{i}\right)-u\left(x_{i+1}\right)}{h^{2}}+u\left(x_{i}\right) e^{-u^{2}\left(x_{i}\right)}\right) 2_{2}-f\left(x_{i}\right)
$$

Taylor expansion of u around the point x_{i} yields

$$
\frac{-u\left(x_{i-1}\right)+2 u\left(x_{i}\right)-u\left(x_{i+1}\right)}{h^{2}}=-u^{\prime \prime}\left(x_{i}\right)-\frac{u^{(4)}(\alpha)+u^{(4)}(\beta)}{24} h^{2}
$$

for some $\alpha, \beta \in\left[x_{i-1}, x_{i+1}\right]$. We conclude that

$$
\left|\tau_{h}\left(x_{i}\right)\right| \leq \underbrace{\left|-u^{\prime \prime}\left(x_{i}\right)+u\left(x_{i}\right) e^{-u^{2}\left(x_{i}\right) / 2}-f\left(x_{i}\right)\right|}_{=0}+\frac{1}{12}\left\|u^{(4)}\right\|_{\infty} h^{2} \leq C_{f} \frac{h^{2}}{12}
$$

for all $i=1,2, \ldots, n$, which means that $\left\|\tau_{h}\right\|_{h, \infty} \leq C_{f} h^{2} / 12$.

Problem 3

We consider the partial differential equation

$$
\begin{align*}
u_{t} & =u_{x x}-2 u & & x \in(0,1), \quad t>0 \tag{4}\\
u_{x}(0, t) & =0, \quad u(1, t)=0 & & t \geq 0 \tag{5}\\
u(x, 0) & =f(x) & & x \in(0,1)
\end{align*}
$$

where $f \in C([0,1])$ is a given function.
3a (weight 10\%)
Show that the PDE (4)-(6) at most has one smooth solution.
(Hint: Consider the energy function $E(t)=\int_{0}^{1} u^{2}(x, t) d x$.)
Solution suggestion: For $t>0$, integration by parts yields

$$
E^{\prime}(t)=2 \int_{0}^{1} u_{t} u d x=2 \int_{0}^{1}\left(u_{x x}-2 u\right) u d x=\int_{0}^{1}-2 u_{x}^{2}-4 u^{2} d x \leq 0
$$

(Continued on page 5.)

Hence

$$
\int_{0}^{1}(u(x, t))^{2} d x=E(t) \leq E(0)=\int_{0}^{1} f(x)^{2} d x \quad t \geq 0
$$

holds for any smooth solution of the PDE.
If u and v are smooth solutions of the $\operatorname{PDE}(4)-(6)$. Since $u(\cdot, 0)=f$ and $v(\cdot, 0)=f$, since the PDE is linear, and since the linear boundary conditions carry over to $u-v$ (meaning $(u-v)_{x}(0, t)=0$ and $(u-v)(1, t)=0$ for $t \geq 0)$, the function $(u-v)$ solves (4)-(5). The energy argument therefore applies to $u-v$, so that for all $t \geq 0$,

$$
\int_{0}^{1}(u(x, t)-v(x, t))^{2} d x \leq \int_{0}^{1}(u(x, 0)-v(x, 0))^{2} d x=0 \Longrightarrow u \equiv v .
$$

3b (weight 10\%)

Compute a family of particular solutions to (4)-(5).
Solution suggestion: Solution ansatz $u(x, t)=T(t) X(x)$ and separation of variables leads to

$$
\frac{T^{\prime}}{T}=\frac{X^{\prime \prime}-2 X}{X}=-\lambda
$$

for some $\lambda \in \mathbb{R}$. For the eigenvalue problem

$$
L X=-X^{\prime \prime}(x)+2 X(x)=\lambda X, \quad x \in(0,1)
$$

with boundary conditions $X^{\prime}(0)=0$ and $X(1)=0$. Note that the positive definiteness of L for any such eigenpair (X, λ) we have that

$$
\lambda\langle X, X\rangle=\langle L X, X\rangle=\int_{0}^{1}\left(X^{\prime}\right)^{2}+2 X^{2} d x=2\langle X, X\rangle+\left\langle X^{\prime}, X^{\prime}\right\rangle .
$$

For eigenfunctions one always assume that $X \not \equiv 0$, and by $X(1)=0$, this also implies that $X^{\prime} \not \equiv 0$. We conclude from the above that

$$
\lambda=\frac{2\langle X, X\rangle+\left\langle X^{\prime}, X^{\prime}\right\rangle}{\langle X, X\rangle}>2 .
$$

Writing $\beta=\sqrt{\lambda-2}$, we can rewrite the above problem $X^{\prime \prime}=-\beta^{2} X$, with general solution

$$
X(x)=a \cos (\beta x)+b \sin (\beta x) .
$$

$X^{\prime}(0)=0$ and $\beta>0$ implies that $b=0$, and $X(1)=0$ implies that $\beta_{k}=(k+1 / 2) \pi$ for $k=0,1, \ldots$. Eigenpairs:
$X_{k}(x)=\cos ((k+1 / 2) \pi x) \quad$ with eigvals $\quad \lambda_{k}=\beta_{k}^{2}+2=(k+1 / 2)^{2} \pi^{2}+2$ and

$$
T_{k}^{\prime}=\lambda_{k} T \quad \text { has solution } \quad T_{k}(t)=\exp \left(-\lambda_{k} t\right) .
$$

Particular solutions
$u_{k}(x, t)=T_{k}(t) X_{k}(x)=\exp \left(-\left(2+(k+1 / 2)^{2} \pi^{2}\right) t\right) \cos ((k+1 / 2) \pi x)$ for $k=0,1, \ldots$

3c (weight 10\%)

Describe the formal solution to (4)-(6). If you have not computed the particular solutions in Problem 3b, then you can describe the formal solution given a family of particular solutions $u_{k}(x, t)=T_{k}(t) X_{k}(x)$ for $k=0,1, \ldots$.

Thereafter, determine the solution in the case when $f(x)=\cos (\pi x / 2)-$ $3 \cos (9 \pi x / 2)$.

Solution suggestion:

Since the PDE is linear and the boundary conditions are preserved under linear combination of particular solutions, it holds that any linear combination of particular solutions also is a particular solution. The formal solution is given by

$$
u(x, t)=\sum_{k=0}^{\infty} c_{k} u_{k}(x, t)=\sum_{k=0}^{\infty} c_{k} T_{k}(t) X_{k}(x),
$$

where

$$
c_{k}=\frac{\left\langle f, X_{k}\right\rangle}{\left\langle X_{k}, X_{k}\right\rangle} \frac{\int_{0}^{1} f(x) X_{k}(x) d x}{\int_{0}^{1} X_{k}^{2}(x) d x} .
$$

When $f(x)=\cos (\pi x / 2)-3 \cos (9 \pi x / 2)$, the unique solution is

$$
\begin{aligned}
& u(x, t)=u_{0}(x, t)-3 u_{4}(x, t) \\
& =\exp \left(-\left(2+(\pi / 2)^{2}\right) t\right) \cos (\pi x / 2) \\
& \quad-3 \exp \left(-\left(2+(9 \pi / 2)^{2}\right) t\right) \cos (9 \pi x / 2)
\end{aligned}
$$

Problem 4 (weight 10\%)

What can you say about the regularity and the periodic properties of the function

$$
f(x)=\sum_{k=1}^{\infty} \frac{1}{2 \exp (\pi)(4 k-1)^{11 / 3}} \cos ((4 k-1) \pi x) \quad ?
$$

Solution suggestion: The Fourier coefficients are $a_{4 k-1}=$ $\frac{1}{2 \exp (\pi)}(4 k-1)^{-11 / 3}$. So for integers $m \in \mathbb{N}$, we have that

$$
\sum_{k=1}^{\infty} k^{2 m} a_{k}^{2}=\frac{1}{4 \exp (2 \pi)} \sum_{k=1}^{\infty} k^{2 m-22 / 3}= \begin{cases}<\infty & m \leq 3 \\ \infty & m \geq 4\end{cases}
$$

Since the above sum is bounded for $m=3$ but not for $m \geq 4$, the theory on the decay of Fourier coefficients tells us that $f \in C^{2}([-1,1])$ and that it satisfies the following 2-periodic properties: $f^{(j)}(-1)=$ $f^{(j)}(1)$ for all $0 \leq j \leq 2$.

