
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Exam in: MAT3360 –– Introduction to partial differential equations

Day of examination: Wednesday 14 june 2023

Examination hours: 09:00 – 13:00

This problem set consists of 6 pages.

Appendices: None

Permitted aids: None

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Problem 1 (weight 10%)

Solve the following initial value problem

ut(x, t) +
x

1 + t2
ux(x, t) = 1 x ∈ R, t > 0

u(x, 0) = φ(x) x ∈ R,

where φ ∈ C1(R) is a given function.

Solution suggestion: The characteristic equation x′ = x/(1 + t2)
has solution

x(t) = x0 exp(arctan(t)) and x0(x, t) = x exp(− arctan(t)) .

Integrating d
dtu(x(t), t) = 1, we obtain the solution

u(x, t) = u(x0(x, t), 0) + t = φ(xe− arctan(t)) + t

Problem 2

We consider the boundary value problem

−u′′(x) + αu(x)e−u
2(x)/2 = f(x) x ∈ (0, 1)

u(0) = u(1) = 0

}
(1)

where we are given a constant α ≥ 0 and a function f ∈ C2([0, 1]),
and we seek a solution u ∈ C2

0 ((0, 1)). Let us recall that C2
0 ((0, 1)) :=

C2((0, 1)) ∩ C([0, 1]).

(Continued on page 2.)
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2a (weight 10%)

Let L be the operator defined by

(Lu)(x) := −u′′(x) + αu(x) exp(−u2(x)/2). (2)

Show that L is positive definite on C2
0 ((0, 1)) for any α ≥ 0.

Solution suggestion: For every u ∈ C2
0 ((0, 1)), integration by parts

yields

〈Lu, u〉 =
∫ 1

0
−u′′(x)u(x) dx+ α

∫ 1

0
u2(x) exp(−u2(x)/2) dx

=
[
− u′u

]1
0
+

∫ 1

0
(u′(x))2 dx+ α

∫ 1

0
u2(x) exp(−u2(x)/2) dx

≥
∫ 1

0
(u′(x))2 dx ≥ 0.

Moreover,

〈Lu, u〉 = 0 ⇐⇒ u′ ≡ 0 ⇐⇒ u(x) = u(0) +

∫ x

0
u′(s)ds = 0 ∀x ∈ [0, 1]︸ ︷︷ ︸

meaning u≡0

2b (weight 10%)

Describe differential equation’s order, if it is homogeneous or nonhomoge-
neous, and its type of boundary conditions. Motivate your answers.

Furthemore, use a mathematical argument to determine if the differential
equation is linear or nonlinear for different values of α ≥ 0.

Solution suggestion: The equation is second order, since the highest
order of derivative is second order. It is non-homogeneous whenever
its righthandside f(x) not is the zero-function. And the boundary
conditions are Dirichlet, since they describe the values of the solution
itself on the boundary.
And for α = 0, the operator Lu = −u′′ is linear, since for all α, β ∈ R
and u, v ∈ C2(0, 1),

L(αu+ βv) = −(αu+ βv)′′ = α(−u′′) + β(−v′′) = αL(u) + βL(v).

For α > 0, the operator is nonlinear, as for the function u, v = 1 which
belongs to C2(0, 1), we have that

L(u+v) = −(u+v)′′+α(u+v) exp(−(u+v)2/2) = 2α exp(−2) 6= L(u)+L(v),

since

L(u)+L(v) = −u′′+αu exp(−u2/2)+(−v′′)+αv exp(−v2/2) = 2α exp(−1

2
).

(Continued on page 3.)
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2c (weight 10%)

Explain why the boundary value problem (1) with α = 0 has at most one
solution in C2

0 ((0, 1)).

Solution suggestion: When α = 0, assume that u, v ∈ C2
0 ((0, 1))

both are solutions of the equation. Then, since L is linear, the function
(u− v) ∈ C2

0 ((0, 1)) solves the homogeneous boundary value problem
L(u − v) = 0 with (u − v)(0) = (u − v)(1) = 0. By the positive
definiteness of L on C2

0 we obtain that

〈L(u− v), u− v〉 = 0 =⇒ u ≡ v,

hence the solution is unique.

2d (weight 10%)

Show that if f(x) > α exp(−1/2) for all x ∈ [0, 1] and u ∈ C2
0 ((0, 1)) is a

solution of (1), then the solution satisfies that

min
x∈[0,1]

u(x) = 0.

(Hint: Use that x exp−x2/2 ≤ e−1/2 for all x ∈ R.)

Solution suggestion: Using the hint, we have that

−u′′(x) = f(x)− αu(x)e−u2(x)/2 ≥ f(x)− αe−1/2 > 0 ∀x ∈ (0, 1).

This means that u is strictly superharmonic on (0, 1): u′′ < 0, and
the result follows by a maximum principle: Suppose u has a local
minimum in an interior point x0 ∈ (0, 1). Then it must hold that
u′′(x0) ≥ 0, which is contradicted by u′′ < 0. So u has no interior
minima and

min
x∈[0,1]

u(x) = min (u(0), u(1)) = 0.

2e (weight 10%)

We now consider (1) with α = 1.
Describe a numerical method with uniform stepsize h = 1

n+1 for solving
the boundary value problem (1), such that your resulting system of equations
can be written on the form

(Lhv)(xi) = f(xi) i = 1, 2, . . . , n

for an operator Lh on the set of discrete functions Dh,0.
Let f ∈ C2([0, 1]) be such that there exists a unique solution u ∈

C2
0 ((0, 1)) to the boundary value problem (1). Define the truncation error

(Continued on page 4.)
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τh for your numerical method and derive an upper bound for ‖τh‖h,∞ =
maxi=1,...,n |τh(xi)|. You may use that the fourth derivative of u satisfies

‖u(4)‖∞ ≤ ‖f ′′‖∞ + 5‖f‖2∞ + 1 =: Cf (3)

(you do not need to prove (3)).

Solution suggestion: Let h = 1/(n + 1), xi = ih and vi = v(xi) ≈
u(xi) for i = 0, 1, . . . , n+ 1 be the solution of the following system of
equations: v0 = vn+1 = 0 and

−vi−1 + 2vi − vi+1

h2
+ vie

−v2i /2︸ ︷︷ ︸
=(Lhv)(xi)

= f(xi) i = 1, 2, . . . , n.

Then the truncation error is the vector given by

τh(xi) = (Lhu)(xi)−f(xi) =
−u(xi−1) + 2u(xi)− u(xi+1)

h2
+u(xi)e

−u2(xi)/2−f(xi)

Taylor expansion of u around the point xi yields

−u(xi−1) + 2u(xi)− u(xi+1)

h2
= −u′′(xi)−

u(4)(α) + u(4)(β)

24
h2

for some α, β ∈ [xi−1, xi+1]. We conclude that

|τh(xi)| ≤ | − u′′(xi) + u(xi)e
−u2(xi)/2 − f(xi)|︸ ︷︷ ︸

=0

+
1

12
‖u(4)‖∞h2 ≤ Cf

h2

12

for all i = 1, 2, . . . , n, which means that ‖τh‖h,∞ ≤ Cfh2/12.

Problem 3

We consider the partial differential equation

ut = uxx − 2u x ∈ (0, 1), t > 0 (4)
ux(0, t) = 0, u(1, t) = 0 t ≥ 0 (5)
u(x, 0) = f(x) x ∈ (0, 1) (6)

where f ∈ C([0, 1]) is a given function.

3a (weight 10%)

Show that the PDE (4)-(6) at most has one smooth solution.

(Hint: Consider the energy function E(t) =
∫ 1
0 u

2(x, t)dx.)

Solution suggestion: For t > 0, integration by parts yields

E′(t) = 2

∫ 1

0
utu dx = 2

∫ 1

0
(uxx − 2u)u dx =

∫ 1

0
−2u2x − 4u2 dx ≤ 0.

(Continued on page 5.)
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Hence ∫ 1

0
(u(x, t))2dx = E(t) ≤ E(0) =

∫ 1

0
f(x)2 dx t ≥ 0,

holds for any smooth solution of the PDE.
If u and v are smooth solutions of the PDE(4)-(6). Since u(·, 0) = f
and v(·, 0) = f , since the PDE is linear, and since the linear boundary
conditions carry over to u − v (meaning (u − v)x(0, t) = 0 and
(u − v)(1, t) = 0 for t ≥ 0), the function (u − v) solves (4)-(5). The
energy argument therefore applies to u− v, so that for all t ≥ 0,∫ 1

0
(u(x, t)− v(x, t))2 dx ≤

∫ 1

0
(u(x, 0)− v(x, 0))2 dx = 0 =⇒ u ≡ v.

3b (weight 10%)

Compute a family of particular solutions to (4)-(5).

Solution suggestion: Solution ansatz u(x, t) = T (t)X(x) and
separation of variables leads to

T ′

T
=
X ′′ − 2X

X
= −λ

for some λ ∈ R. For the eigenvalue problem

LX = −X ′′(x) + 2X(x) = λX, x ∈ (0, 1)

with boundary conditions X ′(0) = 0 and X(1) = 0. Note that the
positive definiteness of L for any such eigenpair (X,λ) we have that

λ〈X,X〉 = 〈LX,X〉 =
∫ 1

0
(X ′)2 + 2X2 dx = 2〈X,X〉+ 〈X ′, X ′〉.

For eigenfunctions one always assume that X 6≡ 0, and by X(1) = 0,
this also implies that X ′ 6≡ 0. We conclude from the above that

λ =
2〈X,X〉+ 〈X ′, X ′〉

〈X,X〉
> 2.

Writing β =
√
λ− 2, we can rewrite the above problem X ′′ = −β2X,

with general solution

X(x) = a cos(βx) + b sin(βx).

X ′(0) = 0 and β > 0 implies that b = 0, and X(1) = 0 implies that
βk = (k + 1/2)π for k = 0, 1, . . .. Eigenpairs:

Xk(x) = cos((k+1/2)πx) with eigvals λk = β2k+2 = (k+1/2)2π2+2

and
T ′k = λkT has solution Tk(t) = exp(−λkt).

Particular solutions

uk(x, t) = Tk(t)Xk(x) = exp
(
−
(
2+(k+1/2)2π2

)
t
)
cos
(
(k+1/2)πx

)
for k = 0, 1, . . .

(Continued on page 6.)
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3c (weight 10%)

Describe the formal solution to (4)-(6). If you have not computed the
particular solutions in Problem 3b, then you can describe the formal solution
given a family of particular solutions uk(x, t) = Tk(t)Xk(x) for k = 0, 1, . . ..

Thereafter, determine the solution in the case when f(x) = cos(πx/2)−
3 cos(9πx/2).

Solution suggestion:
Since the PDE is linear and the boundary conditions are preserved
under linear combination of particular solutions, it holds that any
linear combination of particular solutions also is a particular solution.
The formal solution is given by

u(x, t) =
∞∑
k=0

ckuk(x, t) =
∞∑
k=0

ckTk(t)Xk(x),

where

ck =
〈f,Xk〉
〈Xk, Xk〉

∫ 1
0 f(x)Xk(x) dx∫ 1

0 X
2
k(x) dx

.

When f(x) = cos(πx/2)− 3 cos(9πx/2), the unique solution is

u(x, t) = u0(x, t)− 3u4(x, t)

= exp
(
−
(
2 + (π/2)2

)
t
)
cos
(
πx/2

)
− 3 exp

(
−
(
2 + (9π/2)2

)
t
)
cos
(
9πx/2

)

Problem 4 (weight 10%)

What can you say about the regularity and the periodic properties of the
function

f(x) =
∞∑
k=1

1

2 exp(π)(4k − 1)11/3
cos((4k − 1)πx) ?

Solution suggestion: The Fourier coefficients are a4k−1 =
1

2 exp(π)(4k − 1)−11/3. So for integers m ∈ N, we have that

∞∑
k=1

k2ma2k =
1

4 exp(2π)

∞∑
k=1

k2m−22/3 =

{
<∞ m ≤ 3

∞ m ≥ 4

Since the above sum is bounded for m = 3 but not for m ≥ 4, the
theory on the decay of Fourier coefficients tells us that f ∈ C2([−1, 1])
and that it satisfies the following 2-periodic properties: f (j)(−1) =
f (j)(1) for all 0 ≤ j ≤ 2.

THE END


