
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Exam in: MAT3360 –– Introduction to partial differential equations

Day of examination: Monday, June 10, 2024

Examination hours: 15:00 – 19:00

This problem set consists of 7 pages.

Appendices: None

Permitted aids: None

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Problem 1 (weight 20%)

For each of the four differential equations below, describe the following five
properties:

1. is it an ordinary differential equation (ODE) or a partial differential
equation (PDE)?

2. describe the differential operator of the homogeneous part of the
differential equation (the domain and range of the operator mapping
is not needed),

3. is the differential equation linear or nonlinear?

4. is the differential equation homogeneous or non-homogeneous?

5. what is the order of the differential equation?

Unlike for all later problems, you do not need to motivate your
answers in Problem 1.

a)

ut(x, t) = 2uxx(x, t) + 3ux(x, t) x ∈ R, t > 0 .

b)

X ′′(x) = eX(x) − sin(3x2) x ∈ R .

c)

ut(x, y, t)− xuxx(x, y, t)− y2uyyy(x, y, t) = xy2t3 (x, y) ∈ R2, t > 0 .

d)

ut(x, t) + ux(x, t)u(x, t) = 0 x ∈ R, t > 0 .

(Continued on page 2.)
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Solution suggestion:

a) 1. PDE. 2. L(u) = ut− 2uxx− 3ux. 3. linear. 4. homogeneous.
5. order 2.

b) 1. ODE. 2. L(X) = X ′′ − eX . 3. nonlinear. 4. non-
homogeneous. 5. order 2.

c) 1. PDE. 2. L(u)(x, y, t) = ut(x, y, t) − xuxx(x, y, t) −
y2uyyy(x, y, t). 3. linear. 4. non-homogeneous. 5. order 3.

d) 1. PDE. 2. L(u) = ut + uxu. 3. nonlinear. 4. homogeneous. 5.
order 1.

Problem 2

2a (weight 10%)

We consider the wave equation

utt(x, t) = uxx(x, t) x ∈ (0, 1), t > 0

ux(0, t) = 0, ux(1, t) = 0 t ≥ 0,

u(x, 0) = f(x), ut(x, 0) = g(x) x ∈ (0, 1),

 (1)

where f : [0, 1] → R and g : [0, 1] → R are given smooth functions. Show
that the PDE (1) has at most one solution in C2([0, 1]× [0,∞)).

2b (weight 10%)

Find the unique solution of the wave equation (1) when f(x) = 2 sin2(πx)
and g(x) = cos(3πx).

Hint: Rewrite f(x) using trigonometric identities and determine the
solution for instance through computing the formal solution to this problem.

Solution suggestion: a) Assume that u, v ∈ C2 both solve the
PDE both with the boundary conditions and initial conditions given
in (1). Then, by the linearity of the PDE, w := (u − v) ∈ C2 and
it solves the wave equation wtt = wxx with boundary conditions
wx(0, t) = wx(1, t) = 0 for t ≥ 0 and initial conditions w(·, 0) ≡ 0
and wt(·, 0) ≡ 0.
Differentiating the energy function

E(t) =

∫ 1

0
(wx(x, t))2 + (wt(x, t))

2dx

and using that wxt = wtx, we obtain that

E′(t) = 2

∫ 1

0
wxwtx + wtwttdx

= 2
(

(wtwx)(1, t)− (wtwx)(0, t)
)

+ 2

∫ 1

0
wt(wtt − wxx)dx

= 0.

(Continued on page 3.)
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This implies that wt ≡ 0 and wx ≡ 0, which means that w ≡ c for
some constant c ∈ R, and c = 0 since w(·, 0) ≡ 0. So w ≡ 0, which
means that u = v, so the solution is unique (if it exists).

b) The formal solution of the wave equation is given by

u(x, t) =
a0

2
+

∞∑
k=1

cos(kπx)(ak cos(kπt) +
bk
kπ

sin(kπt))

where

ak = 2

∫ 1

0
cos(kπx)f(x)dx, and bk = 2

∫ 1

0
cos(kπx)g(x)dx

By the orthogonality of the Cosine series on [0, 1] and using that

2 sin2(πx) = − cos(πx+ πx) + cos(πx− πx) = 1− cos(2πx),

we obtain that

ak =


2 k = 0

−1 k = 2

0 otherwise
, and bk =

{
1 k = 3

0 otherwise.

We obtain the formal solution

u(x, t) = 1− cos(2πx) cos(2πt) +
1

3π
cos(3πx) sin(3πt).

Since the formal solution is a linear combination of a finite number of
smooth particular solutions and the PDE is linear, it follows that this
is indeed is the unique smooth solution of the PDE.

Problem 3

We consider the heat equation

ut(x, t) = 3uxx(x, t) x ∈ (0, 1), t > 0

u(0, t) = 0, u(1, t) = 0 t ≥ 0

u(x, 0) = x(1− x) x ∈ (0, 1).

3a (weight 10%)

Let ∆t > 0 and let ∆x = 1/(n + 1) for some integer n ≥ 1. Construct an
explicit finite difference method for numerically solving the heat equation on
the mesh

(xj , tm) = (j∆x,m∆t) for j = 0, 1, . . . , n+ 1, and m ≥ 0.

Remember to describe the boundary conditions and the initial condition.
Notation: For consistency with the problem formulation in Problem 3b,

let vmj denote the numerical solution at the point (xj , tm).

(Continued on page 4.)
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3b (weight 10%)

Impose a condition for the relationship between ∆t and ∆x such that

max
j∈{0,1,...,n+1}

vmj ≤ 1/4, holds for all m ≥ 0, (2)

where vmj denotes your numerical solution at the point (xj , tm) from Problem
3a. Furthermore, verify that the inequality (2) holds under your
imposed condition.

Solution suggestion: a)We propose the scheme

vm+1
j − vmj

∆t
= 3

vmj−1 − 2vmj + vmj+1

∆x2

for j = 1, . . . , n and m ≥ 0. Boundary conditions vm0 = vmn+1 = 0 for
m ≥ 0, and initial condition v0

j = xj(1− xj) for j = 1, . . . , n.

b) We impose that
6∆t

∆x2
≤ 1.

Let V m
+ := maxj∈{0,1,...,n+1} v

m
j and assume that (2) holds for some

m ≥ 0. The scheme tells us that

vm+1
j = vmj (1− 6∆t

∆x2
)︸ ︷︷ ︸

≥0

+
3∆t

∆x2

(
vmj−1 + vmj+1

)
j = 1, . . . , n

so that
vm+1
j = V m

+ (1− 3∆t

2∆x2
) +

3∆t

∆x2
V m

+ = V m
+

holds for all j = 1, . . . , n. Since also vm+1
0 = vm+1

n+1 = 0 ≤ 1/4,
we conclude that V m

+ ≤ 1/4 =⇒ V m+1
+ . Observing that V 0

+ ≤
maxx∈[0,1] x(1− x) = 1/4, the result holds by induction.

Problem 4

Let Ω ⊂ R2 be an open, non-empty, bounded, and connected domain with
smooth boundary ∂Ω, and let n : ∂Ω → R2 denote the unit outer normal
vector. We consider the PDE

−(exyux(x, y))x − (exyuy(x, y))y = f(x, y) (x, y) ∈ Ω

∂u

∂n
(x, y) + u(x, y) = g(x, y) (x, y) ∈ ∂Ω

 (3)

where f : Ω→ R and g : ∂Ω→ R are given smooth functions, and we recall
the notation ∂u

∂n = uxn1 + uyn2, where n = (n1, n2).

4a (weight 10%)

Show that the differential operator L : C2(Ω) → C(Ω) defined by
L(u)(x, y) = −(exyux(x, y))x − (exyuy(x, y))y is linear.

(Continued on page 5.)
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4b (weight 10%)

Show that the PDE (3) has at most one smooth solution.
Hint: Note that

L(u) = −div
[
exyux
exyuy

]
and that by the boundedness of the domain Ω, it holds that
min(x,y)∈Ω e

xy =: c > 0.

Solution suggestion: a) For any u, v ∈ C2 and any α, β ∈ R, we
have that

L(αu+ βv) = −(exy(αux + βvx))x − (exy(αuy + βuy))y

= −α
(

(exyux)x + (exyuy)y

)
− β

(
(exyvx)x + (exyvy)y

)
= αL(u) + βL(v).

b)Assume that u and v both are smooth solutions of (3) with the
same right-hand side f in the differential equation and g(x) in the
boundary condition.
Then by the linearity of the differential operator and the linearity
of the homogeneous part of the boundary condition, w = u − v is a
smooth function that solves the PDE

L(w) = −(exywx(x, y))x − (exywy(x, y))y = 0 (x, y) ∈ Ω

∂w

∂n
(x, y) + w(x, y) = 0 (x, y) ∈ ∂Ω.

(4)

By the divergence theorem/Green’s first identity,

0 =

∫∫
Ω

(wL(w))(x, y) dx dy

= −
∫∫

Ω
w div

[
exywx

exywy

]
dx dy

=

∫∫
Ω
exy|∇w|2 dx dy −

∫
∂Ω
exyw

∂w

∂n
ds

=

∫∫
Ω
exy|∇w|2 dx dy +

∫
∂Ω
exyw2ds

≥ c
∫∫

Ω
|∇w|2 dx dy + c

∫
∂Ω
w2ds .

We obtained the fourth equation by using the boundary condition.
This implies that wx ≡ 0 and wy ≡ 0, so that w is a constant function
on Ω, and from the latter integral we see that w|∂Ω = 0. Combined,
this implies that w ≡ 0 on Ω, hence u = v.

(Continued on page 6.)
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Problem 5

5a (weight 10%)

For f(x) = x exp(x2) and N ∈ N, let SN (f) denote the truncated Fourier
series of f on [−1, 1], namely,

SN (f)(x) =
a0

2
+

N∑
k=1

ak cos(kπx) + bk sin(kπx) ,

where

ak =

∫ 1

−1
cos(kπx)f(x)dx, and bk =

∫ 1

−1
sin(kπx)f(x)dx.

Determine if it holds that SN (f) converges as N →∞ in

1. pointwise sense for all x ∈ [−1, 1], and if so, to what limit?

2. uniform sense on the interval [−1, 1] to f?

Hint: To answer case 2., it may be helpful to use that uniform
convergence implies pointwise convergence to the same limit.

5b (weight 10%)

Show that
ak = 0, for all k = 0, 1, . . .

and for the sequence
lim
k→∞

bk = 0.

for the sequences {ak}∞k=0 and {bk}∞k=1 described in Problem 5a.

Solution suggestion: a) We have that f ∈ C1[−1, 1] is on [−1, 1],
but since f is not periodic, its 2-periodic extension from [−1, 1) has
discontinuities only at odd integers −1, 1, 3, . . ., as

fper(−1−) = f(1−) = e1 while fper(−1+) = f(−1+) = −e1.

The function f is continuously differentiable on [−1, 1], which
implies that it is one-sided differentiable on [−1, 1]. This implies
pointwise convergence of SN (f), (as this implies that fper is one-sided
differentiable on R, where we note that since f ′ is not 2-periodic,
f ′(−1) 6= f ′(1), f ′per(±1−) 6= f ′per(±1+)).
Since fper = f |(−1,1) is continuous on (−1, 1), we have that fper(x+) =
fper(x−) for all x ∈ (−1, 1) and pointwise convergence holds with

lim
N→∞

SN (f)(x) =
fper(x−) + fper(x+)

2
=

{
= (e1 − e1)/2 = 0 x ∈ {−1, 1}
x exp(x2) x ∈ (−1, 1)

.

Suppose next SN (f)(x) converges uniformly to f on [−1, 1]. Then, by
the pointwise convergence at x = 1, we reach the contradiction

0 = lim
N→∞

‖SN (f)− f‖∞ ≤ lim
N→∞

|SN (f)(1)− f(1)| = e1.

(Continued on page 7.)
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This shows that SN (f) does not converge uniformly to f on [−1, 1].

b) f is an odd function, as f(−x) = −xex2
= −f(x). Therefore,∫ 1

−1
cos(kπx)f(x)dx =

∫ 0

−1
cos(kπx)f(x)dx+

∫ 1

0
cos(kπx)f(x)dx

=

∫ 1

0
cos(kπy)f(−y)dy + +

∫ 1

0
cos(kπx)f(x)dx

= 0

holds for all k ≥ 0.

Since f is continuous on [−1, 1] and all ak = 0, Bessel’s inequality
yields that

∞∑
k=1

b2k ≤
∫ 1

0
f(x)2dx <∞.

Hence

lim
N→∞

∞∑
k=N

b2k = 0,

which implies that bk → 0 as k →∞.

THE END


