UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:	MAT3360 — Introduction to partial differential equations
Day of examination:	Monday, June 10, 2024
Examination hours:	15:00-19:00
This problem set consists of 7 pages.	
Appendices:	None
Permitted aids:	None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1 (weight 20%)

For each of the four differential equations below, describe the following five properties:

- 1. is it an ordinary differential equation (ODE) or a partial differential equation (PDE)?
- 2. describe the differential operator of the homogeneous part of the differential equation (the domain and range of the operator mapping is not needed),
- 3. is the differential equation linear or nonlinear?
- 4. is the differential equation homogeneous or non-homogeneous?
- 5. what is the order of the differential equation?

Unlike for all later problems, you do not need to motivate your answers in Problem 1.

a)

$$u_t(x,t) = 2u_{xx}(x,t) + 3u_x(x,t)$$
 $x \in \mathbb{R}, t > 0.$

b)

$$X''(x) = e^{X(x)} - \sin(3x^2) \qquad x \in \mathbb{R}.$$

c)

$$u_t(x, y, t) - xu_{xx}(x, y, t) - y^2 u_{yyy}(x, y, t) = xy^2 t^3$$
 $(x, y) \in \mathbb{R}^2, \quad t > 0.$

d)

$$u_t(x,t) + u_x(x,t)u(x,t) = 0 \qquad x \in \mathbb{R}, \quad t > 0.$$

(Continued on page 2.)

Solution suggestion:

- a) 1. PDE. 2. $L(u) = u_t 2u_{xx} 3u_x$. 3. linear. 4. homogeneous. 5. order 2.
- b) 1. ODE. 2. $L(X) = X'' e^X$. 3. nonlinear. 4. nonhomogeneous. 5. order 2.
- c) 1. PDE. 2. $L(u)(x, y, t) = u_t(x, y, t) xu_{xx}(x, y, t) y^2 u_{yyy}(x, y, t)$. 3. linear. 4. non-homogeneous. 5. order 3.
- d) 1. PDE. 2. $L(u) = u_t + u_x u$. 3. nonlinear. 4. homogeneous. 5. order 1.

Problem 2

2a (weight 10%)

We consider the wave equation

$$u_{tt}(x,t) = u_{xx}(x,t) \qquad x \in (0,1), \quad t > 0$$

$$u_x(0,t) = 0, \quad u_x(1,t) = 0 \qquad t \ge 0,$$

$$u(x,0) = f(x), \quad u_t(x,0) = g(x) \qquad x \in (0,1),$$
(1)

where $f : [0,1] \to \mathbb{R}$ and $g : [0,1] \to \mathbb{R}$ are given smooth functions. Show that the PDE (1) has at most one solution in $C^2([0,1] \times [0,\infty))$.

2b (weight 10%)

Find the unique solution of the wave equation (1) when $f(x) = 2\sin^2(\pi x)$ and $g(x) = \cos(3\pi x)$.

Hint: Rewrite f(x) using trigonometric identities and determine the solution for instance through computing the formal solution to this problem.

Solution suggestion: a) Assume that $u, v \in C^2$ both solve the PDE both with the boundary conditions and initial conditions given in (1). Then, by the linearity of the PDE, $w := (u - v) \in C^2$ and it solves the wave equation $w_{tt} = w_{xx}$ with boundary conditions $w_x(0,t) = w_x(1,t) = 0$ for $t \ge 0$ and initial conditions $w(\cdot,0) \equiv 0$ and $w_t(\cdot,0) \equiv 0$.

Differentiating the energy function

$$E(t) = \int_0^1 (w_x(x,t))^2 + (w_t(x,t))^2 dx$$

and using that $w_{xt} = w_{tx}$, we obtain that

$$E'(t) = 2\int_0^1 w_x w_{tx} + w_t w_{tt} dx$$

= 2\left((w_t w_x)(1,t) - (w_t w_x)(0,t)\right) + 2\int_0^1 w_t (w_{tt} - w_{xx}) dx
= 0.

(Continued on page 3.)

This implies that $w_t \equiv 0$ and $w_x \equiv 0$, which means that $w \equiv c$ for some constant $c \in \mathbb{R}$, and c = 0 since $w(\cdot, 0) \equiv 0$. So $w \equiv 0$, which means that u = v, so the solution is unique (if it exists).

b) The formal solution of the wave equation is given by

$$u(x,t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \cos(k\pi x) (a_k \cos(k\pi t) + \frac{b_k}{k\pi} \sin(k\pi t))$$

where

$$a_k = 2 \int_0^1 \cos(k\pi x) f(x) dx$$
, and $b_k = 2 \int_0^1 \cos(k\pi x) g(x) dx$

By the orthogonality of the Cosine series on [0, 1] and using that

$$2\sin^2(\pi x) = -\cos(\pi x + \pi x) + \cos(\pi x - \pi x) = 1 - \cos(2\pi x),$$

we obtain that

$$a_k = \begin{cases} 2 & k = 0 \\ -1 & k = 2 \\ 0 & \text{otherwise} \end{cases}, \text{ and } b_k = \begin{cases} 1 & k = 3 \\ 0 & \text{otherwise.} \end{cases}$$

We obtain the formal solution

$$u(x,t) = 1 - \cos(2\pi x)\cos(2\pi t) + \frac{1}{3\pi}\cos(3\pi x)\sin(3\pi t).$$

Since the formal solution is a linear combination of a finite number of smooth particular solutions and the PDE is linear, it follows that this is indeed is the unique smooth solution of the PDE.

Problem 3

We consider the heat equation

$$u_t(x,t) = 3u_{xx}(x,t) \qquad x \in (0,1), \quad t > 0$$

$$u(0,t) = 0, \quad u(1,t) = 0 \qquad t \ge 0$$

$$u(x,0) = x(1-x) \qquad x \in (0,1).$$

3a (weight 10%)

Let $\Delta t > 0$ and let $\Delta x = 1/(n+1)$ for some integer $n \ge 1$. Construct an explicit finite difference method for numerically solving the heat equation on the mesh

 $(x_j, t_m) = (j\Delta x, m\Delta t)$ for $j = 0, 1, \dots, n+1$, and $m \ge 0$.

Remember to describe the boundary conditions and the initial condition.

Notation: For consistency with the problem formulation in Problem 3b, let v_j^m denote the numerical solution at the point (x_j, t_m) .

(Continued on page 4.)

3b (weight 10%)

Impose a condition for the relationship between Δt and Δx such that

$$\max_{j \in \{0,1,\dots,n+1\}} v_j^m \le 1/4, \quad \text{holds for all} \quad m \ge 0, \tag{2}$$

where v_j^m denotes your numerical solution at the point (x_j, t_m) from Problem 3a. Furthermore, verify that the inequality (2) holds under your imposed condition.

Solution suggestion: a)We propose the scheme $\frac{v_j^{m+1} - v_j^m}{\Delta t} = 3 \frac{v_{j-1}^m - 2v_j^m + v_{j+1}^m}{\Delta x^2}$

for j = 1, ..., n and $m \ge 0$. Boundary conditions $v_0^m = v_{n+1}^m = 0$ for $m \ge 0$, and initial condition $v_j^0 = x_j(1-x_j)$ for j = 1, ..., n.

b) We impose that

$$\frac{6\Delta t}{\Delta x^2} \le 1.$$

Let $V^m_+ := \max_{j \in \{0,1,\dots,n+1\}} v^m_j$ and assume that (2) holds for some $m \ge 0$. The scheme tells us that

$$v_j^{m+1} = v_j^m \underbrace{\left(1 - \frac{6\Delta t}{\Delta x^2}\right)}_{\geq 0} + \frac{3\Delta t}{\Delta x^2} \left(v_{j-1}^m + v_{j+1}^m\right) \qquad j = 1, \dots, n$$

so that

$$v_j^{m+1} = V_+^m (1 - \frac{3\Delta t}{2\Delta x^2}) + \frac{3\Delta t}{\Delta x^2} V_+^m = V_+^m$$

holds for all j = 1, ..., n. Since also $v_0^{m+1} = v_{n+1}^{m+1} = 0 \le 1/4$, we conclude that $V_+^m \le 1/4 \implies V_+^{m+1}$. Observing that $V_+^0 \le \max_{x \in [0,1]} x(1-x) = 1/4$, the result holds by induction.

Problem 4

Let $\Omega \subset \mathbb{R}^2$ be an open, non-empty, bounded, and connected domain with smooth boundary $\partial\Omega$, and let $n : \partial\Omega \to \mathbb{R}^2$ denote the unit outer normal vector. We consider the PDE

$$\left. \left. \begin{array}{l} -(e^{xy}u_x(x,y))_x - (e^{xy}u_y(x,y))_y = f(x,y) & (x,y) \in \Omega \\ \frac{\partial u}{\partial n}(x,y) + u(x,y) = g(x,y) & (x,y) \in \partial\Omega \end{array} \right\}$$

$$(3)$$

where $f: \Omega \to \mathbb{R}$ and $g: \partial \Omega \to \mathbb{R}$ are given smooth functions, and we recall the notation $\frac{\partial u}{\partial n} = u_x n_1 + u_y n_2$, where $n = (n_1, n_2)$.

4a (weight 10%)

Show that the differential operator $L : C^2(\Omega) \to C(\Omega)$ defined by $L(u)(x,y) = -(e^{xy}u_x(x,y))_x - (e^{xy}u_y(x,y))_y$ is linear.

(Continued on page 5.)

4b (weight 10%)

Show that the PDE (3) has at most one smooth solution.

Hint: Note that

$$L(u) = -\operatorname{div} \begin{bmatrix} e^{xy}u_x \\ e^{xy}u_y \end{bmatrix}$$

and that by the boundedness of the domain Ω , it holds that $\min_{(x,y)\in\overline{\Omega}} e^{xy} =: c > 0.$

Solution suggestion: a) For any $u,v\in C^2$ and any $\alpha,\beta\in\mathbb{R},$ we have that

$$L(\alpha u + \beta v) = -(e^{xy}(\alpha u_x + \beta v_x))_x - (e^{xy}(\alpha u_y + \beta u_y))_y$$
$$= -\alpha \Big((e^{xy}u_x)_x + (e^{xy}u_y)_y \Big) - \beta \Big((e^{xy}v_x)_x + (e^{xy}v_y)_y \Big)$$
$$= \alpha L(u) + \beta L(v).$$

b)Assume that u and v both are smooth solutions of (3) with the same right-hand side f in the differential equation and g(x) in the boundary condition.

Then by the linearity of the differential operator and the linearity of the homogeneous part of the boundary condition, w = u - v is a smooth function that solves the PDE

$$L(w) = -(e^{xy}w_x(x,y))_x - (e^{xy}w_y(x,y))_y = 0 \qquad (x,y) \in \Omega$$
$$\frac{\partial w}{\partial n}(x,y) + w(x,y) = 0 \qquad (x,y) \in \partial\Omega.$$
 (4)

By the divergence theorem/Green's first identity,

$$\begin{split} 0 &= \iint_{\Omega} (wL(w))(x,y) \, dx \, dy \\ &= -\iint_{\Omega} w \, \operatorname{div} \begin{bmatrix} e^{xy} w_x \\ e^{xy} w_y \end{bmatrix} \, dx \, dy \\ &= \iint_{\Omega} e^{xy} |\nabla w|^2 \, dx \, dy - \int_{\partial \Omega} e^{xy} w \frac{\partial w}{\partial n} \, ds \\ &= \iint_{\Omega} e^{xy} |\nabla w|^2 \, dx \, dy + \int_{\partial \Omega} e^{xy} w^2 \, ds \\ &\ge c \iint_{\Omega} |\nabla w|^2 \, dx \, dy + c \int_{\partial \Omega} w^2 \, ds \, . \end{split}$$

We obtained the fourth equation by using the boundary condition. This implies that $w_x \equiv 0$ and $w_y \equiv 0$, so that w is a constant function on Ω , and from the latter integral we see that $w|_{\partial\Omega} = 0$. Combined, this implies that $w \equiv 0$ on $\overline{\Omega}$, hence u = v.

Page 6

Problem 5

5a (weight 10%)

For $f(x) = x \exp(x^2)$ and $N \in \mathbb{N}$, let $S_N(f)$ denote the truncated Fourier series of f on [-1, 1], namely,

$$S_N(f)(x) = \frac{a_0}{2} + \sum_{k=1}^N a_k \cos(k\pi x) + b_k \sin(k\pi x) \,,$$

where

$$a_k = \int_{-1}^{1} \cos(k\pi x) f(x) dx$$
, and $b_k = \int_{-1}^{1} \sin(k\pi x) f(x) dx$.

Determine if it holds that $S_N(f)$ converges as $N \to \infty$ in

- 1. pointwise sense for all $x \in [-1, 1]$, and if so, to what limit?
- 2. uniform sense on the interval [-1, 1] to f?

Hint: To answer case 2., it may be helpful to use that uniform convergence implies pointwise convergence to the same limit.

5b (weight 10%)

Show that

$$a_k = 0,$$
 for all $k = 0, 1, ...$

and for the sequence

$$\lim_{k \to \infty} b_k = 0.$$

for the sequences $\{a_k\}_{k=0}^{\infty}$ and $\{b_k\}_{k=1}^{\infty}$ described in Problem 5a.

Solution suggestion: a) We have that $f \in C^1[-1, 1]$ is on [-1, 1], but since f is not periodic, its 2-periodic extension from [-1, 1) has discontinuities only at odd integers $-1, 1, 3, \ldots$, as

$$f_{per}(-1-) = f(1-) = e^1$$
 while $f_{per}(-1+) = f(-1+) = -e^1$.

The function f is continuously differentiable on [-1,1], which implies that it is one-sided differentiable on [-1,1]. This implies pointwise convergence of $S_N(f)$, (as this implies that f_{per} is one-sided differentiable on \mathbb{R} , where we note that since f' is not 2-periodic, $f'(-1) \neq f'(1), f'_{per}(\pm 1-) \neq f'_{per}(\pm 1+))$. Since $f_{per} = f|_{(-1,1)}$ is continuous on (-1,1), we have that $f_{per}(x+) =$

Since $f_{per} = f_{1(-1,1)}$ is continuous on (-1,1), we have that $f_{per}(x+)$ $f_{per}(x-)$ for all $x \in (-1,1)$ and pointwise convergence holds with

$$\lim_{N \to \infty} S_N(f)(x) = \frac{f_{per}(x-) + f_{per}(x+)}{2} = \begin{cases} = (e^1 - e^1)/2 = 0 & x \in \{-1, 1\} \\ x \exp(x^2) & x \in (-1, 1) \end{cases}$$

Suppose next $S_N(f)(x)$ converges uniformly to f on [-1, 1]. Then, by the pointwise convergence at x = 1, we reach the contradiction

$$0 = \lim_{N \to \infty} \|S_N(f) - f\|_{\infty} \le \lim_{N \to \infty} |S_N(f)(1) - f(1)| = e^1.$$

(Continued on page 7.)

This shows that
$$S_N(f)$$
 does not converge uniformly to f on $[-1, 1]$.
b) f is an odd function, as $f(-x) = -xe^{x^2} = -f(x)$. Therefore,

$$\int_{-1}^1 \cos(k\pi x)f(x)dx = \int_{-1}^0 \cos(k\pi x)f(x)dx + \int_0^1 \cos(k\pi x)f(x)dx$$

$$= \int_0^1 \cos(k\pi y)f(-y)dy + \int_0^1 \cos(k\pi x)f(x)dx$$

$$= 0$$

holds for all $k \ge 0$.

Since f is continuous on [-1, 1] and all $a_k = 0$, Bessel's inequality yields that

$$\sum_{k=1}^{\infty} b_k^2 \le \int_0^1 f(x)^2 dx < \infty.$$

Hence

$$\lim_{N \to \infty} \sum_{k=N}^{\infty} b_k^2 = 0,$$

which implies that $b_k \to 0$ as $k \to \infty$.

THE END