Solutions to the exam in MAT3420, Spring 2020

Problem 1.

Which of the following are possible states of qubits?
a) $\frac{1}{2}|0\rangle+\frac{1}{2}|1\rangle$,
b) $\frac{3}{5}|0\rangle+\frac{4}{5}|1\rangle$,
c) $\frac{\sqrt{3}}{2}|0\rangle+\frac{1}{2}|1\rangle$.

Solution.
An expression $\alpha|0\rangle+\beta|1\rangle$ defines a state, that is, a unit vector, if and only if $|\alpha|^{2}+|\beta|^{2}=$ 1. Therefore
a) NO, b) YES, c) YES.

Problem 2.

Suppose we have m input/output qubits and n ancilla qubits. Consider a quantum circuit consisting of one unitary gate U operating on n ancilla qubits. Prove that we won't see any effect of U.

Solution. A (pure) state of the entire system is represented by a unit vector of the form

$$
\sum_{x=0}^{2^{m}-1}|x\rangle \otimes v_{x}
$$

where v_{x} are vectors in the state space of the ancilla qubits, with $\sum_{x}\left\|v_{x}\right\|^{2}=1$. Our circuit transforms this into

$$
\sum_{x}|x\rangle \otimes U v_{x}
$$

The probability of the outcome x is therefore $\left\|U v_{x}\right\|^{2}=\left\|v_{x}\right\|^{2}$, which is independent of U.

Problem 3.

One of the classical subroutines of Shor's factoring algorithm computes the modular inverse of a number. Explain this classical algorithm and consider the following example: find the modular inverse of 16 modulo 21 , that is, find a number n such that $16 n=1$ $\bmod 21$.

Solution. The algorithm was explained in the last lecture. In this case it runs as follows:

1) Divide 21 by 16 with remainder: $21=1 \cdot 16+5$.
2) Divide 16 by 5 with remainder: $16=3 \cdot 5+1$. Then rewrite this back in terms of 21 and $16: 16=3 \cdot(21-1 \cdot 16)+1$. In other words,

$$
4 \cdot 16-3 \cdot 21=1
$$

As the remainder is already 1 , the algorithm stops at this step: the inverse of 16 modulo 21 is 4 .

Problem 4.

Prove the following equality of quantum circuits:

where σ_{z} is the Pauli matrix (also denoted by Z).
Solution. This can be checked directly on the four input states $|00\rangle,|01\rangle,|10\rangle,|11\rangle$. In a bit more concise form, one can also observe that the left hand side maps $|x y\rangle=|x\rangle \otimes|y\rangle$ into $|x\rangle \otimes(-1)^{x y}|y\rangle=(-1)^{x y}|x y\rangle$, and the right hand side maps $|x y\rangle=|x\rangle \otimes|y\rangle$ into $(-1)^{x y}|x\rangle \otimes|y\rangle=(-1)^{x y}|x y\rangle$.

Problem 5.

Prove the following equality of quantum circuits:

Solution. One possibility is again just to check this directly on the four input states $|00\rangle,|01\rangle,|10\rangle,|11\rangle$. But it is also possible to deduce this from the previous problem as follows.

We can apply $H^{-1}=H$ to the first qubit before and after running these circuits. In other words, an equivalent identity is

Next, observe that for any unitary gates U and V we have

It follows that (1) is equivalent to

But $H \sigma_{x} H=\sigma_{z}$, so this is exactly the identity from the previous problem.

Problem 6.

Assume we have two quantum circuits U and U^{\prime} with m input/output qubits and n ancilla qubits, both computing a function f, but U does this without leaving garbage in the ancilla qubits, while U^{\prime} possibly not. In other words, we have

$$
U(|x\rangle \otimes|0\rangle)=|f(x)\rangle \otimes|0\rangle, \quad U^{\prime}(|x\rangle \otimes|0\rangle)=|f(x)\rangle \otimes|g(x)\rangle
$$

for some function g. What are necessary and sufficient conditions on g for not seeing any difference between U and U^{\prime} for any (mixed) input state?

Solution. The formulation was unfortunate. The way the problem is formulated, g does not need any special properties. Indeed, implicitly we assume that f is bijective, and therefore by applying the circuits to a state $\sum_{x} \alpha_{x}|x\rangle \otimes|0\rangle$ we get

$$
U\left(\sum_{x} \alpha_{x}|x\rangle \otimes|0\rangle\right)=\sum_{x} \alpha_{x}|f(x)\rangle \otimes|0\rangle, \quad U^{\prime}\left(\sum_{x} \alpha_{x}|x\rangle \otimes|0\rangle\right)=\sum_{x} \alpha_{x}|f(x)\rangle \otimes|g(x)\rangle,
$$

and in both cases the probability of the outcome $|f(x)\rangle$ for the output qubits is $\left|\alpha_{x}\right|^{2}$.

Problem 7.

Consider two quantum systems A and B with (finite dimensional) state spaces H_{A} and H_{B}. Let $\xi \in H_{A} \otimes H_{B}$ be a pure state (unit vector) of the composite system. It can be shown that there exist an orthonormal system of vectors e_{1}, \ldots, e_{n} in H_{A}, an orthonormal system of vectors $f_{1}, \ldots, f_{n} \in H_{B}$, and numbers $\lambda_{k}>0$ such that

$$
\xi=\sum_{k=1}^{n} \lambda_{k} e_{k} \otimes f_{k} .
$$

This is called a Schmidt decomposition of ξ. (See [Chuang-Nielsen], p. 109, for a proof, but it is not needed to solving this problem.) Can you find n without knowing the decomposition? Show that the number n depends only on ξ. It is called the Schmidt number of ξ and can be considered as a measure of entanglement of ξ.

Solution. The number n can be expressed as the rank of an operator, or in other words, as the dimension of a vector space, in a number of related ways. For example, as follows.

For every $u \in H_{B}$ we can define a linear map $\ell_{u}: H_{A} \otimes H_{B} \rightarrow H_{A}$ by $\ell_{u}(v \otimes w)=(w, u) v$. Then, on the one hand, the set of vectors $\ell_{u}(\xi)$ for all $u \in H_{B}$ is exactly the linear span of e_{1}, \ldots, e_{n}, so it is a vector space of dimension n. On the other hand, this set depends on ξ itself and not on anything else.

