Solutions to the exam in M AT3420, Spring 2020

Problem 1.
Which of the following are possible states of qubits?

) 3100+ 511),
b) 210) + £11),
V3

1
—10) + =|1).
o L0y + 1)
Solution.
An expression a|0)+3|1) defines a state, that is, a unit vector, if and only if |a|?+|3[* =

1. Therefore
a) NO, b) YES, ¢) YES.

Problem 2.

Suppose we have m input/output qubits and n ancilla qubits. Consider a quantum
circuit consisting of one unitary gate U operating on n ancilla qubits. Prove that we
won’t see any effect of U.

Solution. A (pure) state of the entire system is represented by a unit vector of the

form
om_q
Z |T) ® Vs,
x=0

where v, are vectors in the state space of the ancilla qubits, with Y _|lv.]|* = 1. Our
circuit transforms this into
Z |z) ® Uv,.
T

The probability of the outcome z is therefore ||Uv,||*> = ||v,||?, which is independent of U.

Problem 3.

One of the classical subroutines of Shor’s factoring algorithm computes the modular
inverse of a number. Explain this classical algorithm and consider the following example:
find the modular inverse of 16 modulo 21, that is, find a number n such that 16n = 1
mod 21.

Solution. The algorithm was explained in the last lecture. In this case it runs as
follows:

1) Divide 21 by 16 with remainder: 21 =1-16 + 5.

2) Divide 16 by 5 with remainder: 16 = 3 -5+ 1. Then rewrite this back in terms of
21 and 16: 16 =3- (21 —1-16) + 1. In other words,

4-16-3-21=1.

As the remainder is already 1, the algorithm stops at this step: the inverse of 16 modulo

21 is 4.
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Problem 4.

Prove the following equality of quantum circuits:

D — — Oy —

— 0y — —_—————

where o, is the Pauli matrix (also denoted by 7).

Solution. This can be checked directly on the four input states |00), |01), |10), |11). In
a bit more concise form, one can also observe that the left hand side maps |zy) = |z) ®|y)
into |z) @ (—1)"|y) = (—1)*¥|zy), and the right hand side maps |zy) = |z) ® |y) into
(=D™|z) @ ly) = (=1)™|zy).

Problem 5.

Prove the following equality of quantum circuits:
—H H— —p—
—H—®—/HI— ——

Solution. One possibility is again just to check this directly on the four input states
|00), |01), |10), |11). But it is also possible to deduce this from the previous problem as
follows.

We can apply H~! = H to the first qubit before and after running these circuits. In
other words, an equivalent identity is

—H—®— H—
(1) =
—H—®&— H—
Next, observe that for any unitary gates U and V' we have
— UV U — —UVU* ——

It follows that is equivalent to

—  Ho,H——

— Ho,H ——

But Ho,H = 0., so this is exactly the identity from the previous problem.

Problem 6.

Assume we have two quantum circuits U and U’ with m input/output qubits and n
ancilla qubits, both computing a function f, but U does this without leaving garbage in
the ancilla qubits, while U’ possibly not. In other words, we have

U(lz) @ 10)) = [f(2)) ©10),  U'lz) ©10)) = [f(x)) @ |g())
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for some function g. What are necessary and sufficient conditions on g for not seeing any
difference between U and U’ for any (mixed) input state?

Solution. The formulation was unfortunate. The way the problem is formulated, g
does not need any special properties. Indeed, implicitly we assume that f is bijective,
and therefore by applying the circuits to a state ) a,|z) ® |0) we get

U axla) ©0) =) aulf(2)) @10), U'(Y_ aule) ®10) = a.|f(x)) ®g(x)),

and in both cases the probability of the outcome |f(x)) for the output qubits is |a|?.

Problem 7.

Consider two quantum systems A and B with (finite dimensional) state spaces H 4
and Hp. Let £ € Hy ® Hp be a pure state (unit vector) of the composite system. It
can be shown that there exist an orthonormal system of vectors eq,...,e, in Hy, an
orthonormal system of vectors fi,..., f, € Hg, and numbers Ay > 0 such that

§= Z)\kek ® fr-
k=1

This is called a Schmidt decomposition of . (See [Chuang—Nielsen], p. 109, for a proof,
but it is not needed to solving this problem.) Can you find n without knowing the
decomposition? Show that the number n depends only on &. It is called the Schmidt
number of £ and can be considered as a measure of entanglement of .

Solution. The number n can be expressed as the rank of an operator, or in other
words, as the dimension of a vector space, in a number of related ways. For example, as
follows.

For every u € Hp we can define a linear map ¢,,: Hx® Hg — H by {,(v@w) = (w,u)v.
Then, on the one hand, the set of vectors £, () for all u € Hp is exactly the linear span
of ey, ..., e,, so it is a vector space of dimension n. On the other hand, this set depends
on ¢ itself and not on anything else.



