
Solutions to the exam in MAT3420, Spring 2020

Problem 1.

Which of the following are possible states of qubits?

a)
1

2
|0〉+

1

2
|1〉,

b)
3

5
|0〉+

4

5
|1〉,

c)

√
3

2
|0〉+

1

2
|1〉.

Solution.
An expression α|0〉+β|1〉 defines a state, that is, a unit vector, if and only if |α|2+|β|2 =

1. Therefore

a) NO, b) YES, c) YES.

Problem 2.

Suppose we have m input/output qubits and n ancilla qubits. Consider a quantum
circuit consisting of one unitary gate U operating on n ancilla qubits. Prove that we
won’t see any effect of U .

Solution. A (pure) state of the entire system is represented by a unit vector of the
form

2m−1∑
x=0

|x〉 ⊗ vx,

where vx are vectors in the state space of the ancilla qubits, with
∑

x ‖vx‖2 = 1. Our
circuit transforms this into ∑

x

|x〉 ⊗ Uvx.

The probability of the outcome x is therefore ‖Uvx‖2 = ‖vx‖2, which is independent of U .

Problem 3.

One of the classical subroutines of Shor’s factoring algorithm computes the modular
inverse of a number. Explain this classical algorithm and consider the following example:
find the modular inverse of 16 modulo 21, that is, find a number n such that 16n = 1
mod 21.

Solution. The algorithm was explained in the last lecture. In this case it runs as
follows:

1) Divide 21 by 16 with remainder: 21 = 1 · 16 + 5.
2) Divide 16 by 5 with remainder: 16 = 3 · 5 + 1. Then rewrite this back in terms of

21 and 16: 16 = 3 · (21− 1 · 16) + 1. In other words,

4 · 16− 3 · 21 = 1.

As the remainder is already 1, the algorithm stops at this step: the inverse of 16 modulo
21 is 4.
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Problem 4.

Prove the following equality of quantum circuits:

=

σz

σz

where σz is the Pauli matrix (also denoted by Z).

Solution. This can be checked directly on the four input states |00〉, |01〉, |10〉, |11〉. In
a bit more concise form, one can also observe that the left hand side maps |xy〉 = |x〉⊗|y〉
into |x〉 ⊗ (−1)xy|y〉 = (−1)xy|xy〉, and the right hand side maps |xy〉 = |x〉 ⊗ |y〉 into
(−1)xy|x〉 ⊗ |y〉 = (−1)xy|xy〉.

Problem 5.

Prove the following equality of quantum circuits:

H H

H H

=

Solution. One possibility is again just to check this directly on the four input states
|00〉, |01〉, |10〉, |11〉. But it is also possible to deduce this from the previous problem as
follows.

We can apply H−1 = H to the first qubit before and after running these circuits. In
other words, an equivalent identity is

(1) =
H H

H H

Next, observe that for any unitary gates U and V we have

=
U V U∗ UV U∗

It follows that (1) is equivalent to

=

HσxH

HσxH

But HσxH = σz, so this is exactly the identity from the previous problem.

Problem 6.

Assume we have two quantum circuits U and U ′ with m input/output qubits and n
ancilla qubits, both computing a function f , but U does this without leaving garbage in
the ancilla qubits, while U ′ possibly not. In other words, we have

U(|x〉 ⊗ |0〉) = |f(x)〉 ⊗ |0〉, U ′(|x〉 ⊗ |0〉) = |f(x)〉 ⊗ |g(x)〉
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for some function g. What are necessary and sufficient conditions on g for not seeing any
difference between U and U ′ for any (mixed) input state?

Solution. The formulation was unfortunate. The way the problem is formulated, g
does not need any special properties. Indeed, implicitly we assume that f is bijective,
and therefore by applying the circuits to a state

∑
x αx|x〉 ⊗ |0〉 we get

U(
∑
x

αx|x〉 ⊗ |0〉) =
∑
x

αx|f(x)〉 ⊗ |0〉, U ′(
∑
x

αx|x〉 ⊗ |0〉) =
∑
x

αx|f(x)〉 ⊗ |g(x)〉,

and in both cases the probability of the outcome |f(x)〉 for the output qubits is |αx|2.

Problem 7.

Consider two quantum systems A and B with (finite dimensional) state spaces HA

and HB. Let ξ ∈ HA ⊗ HB be a pure state (unit vector) of the composite system. It
can be shown that there exist an orthonormal system of vectors e1, . . . , en in HA, an
orthonormal system of vectors f1, . . . , fn ∈ HB, and numbers λk > 0 such that

ξ =
n∑

k=1

λkek ⊗ fk.

This is called a Schmidt decomposition of ξ. (See [Chuang–Nielsen], p. 109, for a proof,
but it is not needed to solving this problem.) Can you find n without knowing the
decomposition? Show that the number n depends only on ξ. It is called the Schmidt
number of ξ and can be considered as a measure of entanglement of ξ.

Solution. The number n can be expressed as the rank of an operator, or in other
words, as the dimension of a vector space, in a number of related ways. For example, as
follows.

For every u ∈ HB we can define a linear map `u : HA⊗HB → HA by `u(v⊗w) = (w, u)v.
Then, on the one hand, the set of vectors `u(ξ) for all u ∈ HB is exactly the linear span
of e1, . . . , en, so it is a vector space of dimension n. On the other hand, this set depends
on ξ itself and not on anything else.
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