
Solutions to the exam in MAT3420, Spring 2021

Problem 1a.

Describe how one represents the pure states of a one-qubit system on the Bloch sphere. Draw a picture
showing the images of

1√
2
|0〉+

1√
2
|1〉 and − |0〉.

Solution.
A pure state of a one-qubit system can be written as

eiψ
(

cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉
)
,

with 0 ≤ ψ < 2π, 0 ≤ θ < π, 0 ≤ φ < 2π. Its image on the sphere is then

(sin θ cosφ, sin θ sinφ, cos θ).

For the pure state
1√
2
|0〉+

1√
2
|1〉

we have ψ = 0, θ =
π

2
, φ = 0, so we get the point (1, 0, 0) on the sphere, and for

−|0〉
we have ψ = π, θ = 0 and φ any number in [0, 2π), so we get the point (0, 0, 1).

Problem 1b.

Prove the formula
eiθ~a·~σ = (cos θ)I + i(sin θ)~a · ~σ

for all unit vectors ~a ∈ R3 and θ ∈ R.

Solution. For every unit vector ~a ∈ R3, the operator S = ~a · ~σ is a nonscalar symmetry, that is,
S = S∗, S2 = I, S 6= ±I. It follows that it is diagonalizable, with the eigenvalues ±1. It suffices to check
the formula on the eigenvectors of S. If |ψ〉 is an eigenvector of S with eigenvalue λ ∈ {−1, 1}, then

eiθS |ψ〉 = eiθλ|ψ〉 = cos(λθ)|ψ〉+ i sin(λθ)|ψ〉
= (cos θ)|ψ〉+ iλ(sin θ)|ψ〉 =

(
(cos θ)I + i(sin θ)S

)
|ψ〉.

Problem 1c.

Describe in words the action of the unitaries eiθ~a·~σ on the pure states in the Bloch coordinates. You
don’t have to justify your answer.

Solution. For every unit vector ~a ∈ R3 and θ ∈ R, the unitary eiθ~a·~σ acts by the rotation by 2θ
clockwise about the axis ~a.

Problem 2a.

Give the definition of the Schmidt number of a pure state.

Solution. Every pure state of a composite system H1 ⊗H2 can be written as
n∑
k=1

λk|ψk〉 ⊗ |φk〉,

where λk > 0 and the systems {ψ1, . . . , ψn} ⊂ H1 and {φ1, . . . , φn} ⊂ H2 are orthonormal. The number n
is called the Schmidt number of the state.
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Problem 2b.

Compute the Schmidt number of

1

2
(|0〉 ⊗ |0〉+ |0〉 ⊗ |1〉 − |1〉 ⊗ |0〉+ |1〉 ⊗ |1〉).

Solution. As we know, the Schmidt number of |ω〉 ∈ H1 ⊗H2 can be computed as follows. Choose
a basis |ψ1〉, . . . , |ψm〉 in H1. Then

|ω〉 =

m∑
k=1

|ψk〉 ⊗ |φk〉

for uniquely determined |φk〉 ∈ H2, and then the Schmidt number of |ω〉 is the dimension of the space
spanned by |φ1〉, . . . , |φm〉.

Since we can write

1

2
(|0〉 ⊗ |0〉+ |0〉 ⊗ |1〉 − |1〉 ⊗ |0〉+ |1〉 ⊗ |1〉) =

1

2
|0〉 ⊗ (|0〉+ |1〉)− 1

2
|1〉 ⊗ (|0〉 − |1〉),

and the vectors
1

2
(|0〉+ |1〉) and − 1

2
(|0〉 − |1〉)

are linearly independent, we conclude that the Schmidt number equals 2.

Problem 3a.

Find the continued fraction expansion of
23

16
.

Solution. We have

23

16
= 1 +

(16

7

)−1
,

16

7
= 2 +

(7

2

)−1
,

7

2
= 3 +

1

2
,

hence
23

16
= [1; 2, 3, 2].

Problem 3b.

Find all rational numbers
p

q
satisfying ∣∣∣23

16
− p

q

∣∣∣ ≤ 1

2q2
.

Solution. We know that all such nonintegral numbers must be convergents of the continued fraction

expansion of
23

16
. The convergents are

1, [1; 2] =
3

2
, [1; 2, 3] =

10

7
, [1; 2, 3, 2] =

23

16
.

They all satisfy the required inequality. Also, the only integer satisfying the required inequality is 1.
Therefore the complete list of required rational numbers is

1,
3

2
,

10

7
,

23

16
.

Problem 4.

Assume A,B,C,U are one-qubit unitary gates satisfying ABC = I and AXBXC = U , where X = σx
is the NOT gate. Consider the control-U gate Λ(U), so

Λ(U)(|a〉 ⊗ |b〉) = |a〉 ⊗ Ua|b〉 for all a, b ∈ {0, 1}.

Draw a quantum circuit expressing Λ(U) in terms of A,B,C,X and the CNOT gates.
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Solution.

C B A

Problem 5a.

Describe all separable pure states |φ〉 ⊗ |ψ〉 of a 2-qubit system such that

CNOT(|φ〉 ⊗ |ψ〉)
is again separable, that is, it has the form |φ′〉 ⊗ |ψ′〉.

Solution. If |φ〉 = a|0〉+ b|1〉, then

CNOT(|φ〉 ⊗ |ψ〉) = a|0〉 ⊗ |ψ〉+ b|1〉 ⊗X|ψ〉.
We see that if a = 0 or b = 0, then the state we get is again separable. Assume now that a, b 6= 0.
Then the Schmidt number of the above state is the dimension of the space spanned by |ψ〉 and X|ψ〉.
The state is separable if and only if the Schmidt number equals 1, that is, |ψ〉 is an eigenvector of X.
Therefore the required states have the form

|0〉 ⊗ |ψ〉, |1〉 ⊗ |ψ〉, |φ〉 ⊗ |0〉+ |1〉√
2

, |φ〉 ⊗ |0〉 − |1〉√
2

,

where |φ〉 and |ψ〉 are arbitrary pure states.

Problem 5b.

Assume we are given a quantum circuit on k qubits, with input state |0 . . . 0〉, consisisting of n gates
from our standard universal gate set {H,T±1,CNOT} followed by a final measurement of all the qubits.
Assume it is known that at every step of the computation the state we get is separable, that is, it is of
the form

|φ1〉 ⊗ · · · ⊗ |φk〉.
Argue, without going into too many details, that such a quantum computation can be efficiently simulated
on a classical computer. More precisely, show that, assuming we can do exact arithmetic operations with
real numbers, we need not more than Ckn such operations, for some constant Ck depending on k, to
compute the probabilities of all possible outcomes a1 . . . ak of the quantum computation.

Solution. By assumption at every step of the quantum computation we get a state |φ1〉 ⊗ · · · ⊗ |φk〉,
which we can represent by the vector (|φ1〉, . . . , |φk〉) ∈ C2k. What happens to this representation at
the next step? If we act by a one-qubit gate A on the l-th qubit, we can simply apply A to |φl〉. This
requires a fixed small number of arithmetic operations (four multipilications and two additions of complex
numbers). The action of CNOT is a bit more complicated: if we act on the qubits l and m, then our
assumptions imply that CNOT(|φl〉 ⊗ |φm〉) is a simple tensor |φ′〉 ⊗ |ψ′〉, but we need to find such a
tensor explicitly. A simple algorithm for computing this tensor can be written down using the solution
of Problem 5a, but even without that problem it is not difficult to see that this can be done using a finite
number of arithmetic operations. It follows that a vector (α10|0〉 + α11|1〉, . . . , αk0|0〉 + αk1|1〉) ∈ C2k

representing the final state

(α10|0〉+ α11|1〉)⊗ · · · ⊗ (αk0|0〉+ αk1|1〉)
of our quantum circuit can be computed by not more than Cn arithmetic operations for a universal
constant C. The probability of every outcome a1 . . . ak of our quantum computation equals

|α1a1 . . . αkak |2,
so the number Dk of arithmetic operations needed to compute such probabilities from the final state
depends only on k. We see that all in all we need not more than Cn + Dk arithmetic operations to
compute these probabilities, which is even better than what was claimed.
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