UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:	MAT3420 — Quantum computing
Day of examination:	Monday, June 7, 2021
Examination hours:	9:00-13:00
This problem set consists of 2 pages.	
Appendices:	None
Permitted aids:	Any

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All subproblems (1a, 1b,...) carry the same weight.

Problem 1

1a

Describe how one represents the pure states of a one-qubit system on the Bloch sphere. Draw a picture showing the images of

$$\frac{1}{\sqrt{2}}|0
angle + \frac{1}{\sqrt{2}}|1
angle$$
 and $-|0
angle$.

1b

Prove the formula

 $e^{i\theta\vec{a}\cdot\vec{\sigma}} = (\cos\theta)I + i(\sin\theta)\vec{a}\cdot\vec{\sigma}$

for all unit vectors $\vec{a} \in \mathbb{R}^3$ and $\theta \in \mathbb{R}$.

1c

Describe in words the action of the unitaries $e^{i\theta \vec{a}\cdot\vec{\sigma}}$ on the pure states in the Bloch coordinates. You don't have to justify your answer.

Problem 2

2a

Give the definition of the Schmidt number of a pure state.

2b

Compute the Schmidt number of

$$rac{1}{2}(\ket{0}\otimes\ket{0}+\ket{0}\otimes\ket{1}-\ket{1}\otimes\ket{0}+\ket{1}\otimes\ket{1}).$$

(Continued on page 2.)

Problem 3

3a

Find the continued fraction expansion of $\frac{23}{16}$

3b

Find all rational numbers $\frac{p}{q}$ satisfying

$$\Bigl|\frac{23}{16}-\frac{p}{q}\Bigr| \leq \frac{1}{2q^2}$$

Problem 4

Assume A, B, C, U are one-qubit unitary gates satisfying ABC = I and AXBXC = U, where $X = \sigma_x$ is the NOT gate. Consider the control-U gate $\Lambda(U)$, so

$$\Lambda(U)(|a\rangle \otimes |b\rangle) = |a\rangle \otimes U^a |b\rangle \text{ for all } a, b \in \{0, 1\}.$$

Draw a quantum circuit expressing $\Lambda(U)$ in terms of A, B, C, X and the CNOT gates.

Problem 5

5a

Describe all separable pure states $|\phi\rangle \otimes |\psi\rangle$ of a 2-qubit system such that

 $\text{CNOT}(|\phi\rangle \otimes |\psi\rangle)$

is again separable, that is, it has the form $|\phi'\rangle \otimes |\psi'\rangle$.

5b

Assume we are given a quantum circuit on k qubits, with input state $|0...0\rangle$, consisisting of n gates from our standard universal gate set $\{H, T^{\pm 1}, \text{CNOT}\}$ followed by a final measurement of all the qubits. Assume it is known that at every step of the computation the state we get is separable, that is, it is of the form

$$|\phi_1\rangle\otimes\cdots\otimes|\phi_k\rangle.$$

Argue, without going into too many details, that such a quantum computation can be efficiently simulated on a classical computer. More precisely, show that, assuming we can do exact arithmetic operations with real numbers, we need not more than $C_k n$ such operations, for some constant C_k depending on k, to compute the probabilities of all possible outcomes $a_1 \ldots a_k$ of the quantum computation.

SLUTT