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This problem set consists of 2 pages.

Appendices: None

Permitted aids: Any

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

All subproblems (1a, 1b,...) carry the same weight.

Problem 1

1a

Describe how one represents the pure states of a one-qubit system on the

Bloch sphere. Draw a picture showing the images of

1√
2
|0〉+

1√
2
|1〉 and − |0〉.

1b

Prove the formula

eiθ~a·~σ = (cos θ)I + i(sin θ)~a · ~σ

for all unit vectors ~a ∈ R3 and θ ∈ R.

1c

Describe in words the action of the unitaries eiθ~a·~σ on the pure states in the

Bloch coordinates. You don't have to justify your answer.

Problem 2

2a

Give the de�nition of the Schmidt number of a pure state.

2b

Compute the Schmidt number of

1

2
(|0〉 ⊗ |0〉+ |0〉 ⊗ |1〉 − |1〉 ⊗ |0〉+ |1〉 ⊗ |1〉).

(Continued on page 2.)
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Problem 3

3a

Find the continued fraction expansion of
23

16
.

3b

Find all rational numbers
p

q
satisfying

∣∣∣23

16
− p

q

∣∣∣ ≤ 1

2q2
.

Problem 4

Assume A,B,C,U are one-qubit unitary gates satisfying ABC = I and

AXBXC = U , where X = σx is the NOT gate. Consider the control-U gate

Λ(U), so

Λ(U)(|a〉 ⊗ |b〉) = |a〉 ⊗ Ua|b〉 for all a, b ∈ {0, 1}.

Draw a quantum circuit expressing Λ(U) in terms of A,B,C,X and the

CNOT gates.

Problem 5

5a

Describe all separable pure states |φ〉 ⊗ |ψ〉 of a 2-qubit system such that

CNOT(|φ〉 ⊗ |ψ〉)

is again separable, that is, it has the form |φ′〉 ⊗ |ψ′〉.

5b

Assume we are given a quantum circuit on k qubits, with input state |0 . . . 0〉,
consisisting of n gates from our standard universal gate set {H,T±1,CNOT}
followed by a �nal measurement of all the qubits. Assume it is known that

at every step of the computation the state we get is separable, that is, it is

of the form

|φ1〉 ⊗ · · · ⊗ |φk〉.

Argue, without going into too many details, that such a quantum

computation can be e�ciently simulated on a classical computer. More

precisely, show that, assuming we can do exact arithmetic operations with

real numbers, we need not more than Ckn such operations, for some

constant Ck depending on k, to compute the probabilities of all possible

outcomes a1 . . . ak of the quantum computation.
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