MAT3420 2024, Exercises week 16 (for Friday 19 April)

Exercise 1. Show that the Quantum Fourier Transform is a unitary transformation, as follows. For $m \ge 1$, recall that we defined

$$QFT_m \left| x \right\rangle := \frac{1}{\sqrt{m}} \sum_{y=0}^{m-1} e^{2\pi i \frac{xy}{m}} \left| y \right\rangle.$$

Convince yourself that with this definition, the matrix F_m corresponding to QFT_m with respect to the standard (computational) basis has entry (x, y), for $0 \le x, y \le m - 1$ given by

$$[F_m]_{(x,y)} = \frac{1}{\sqrt{m}} e^{2\pi i \frac{yx}{m}}.$$

Then verify that the columns (or, equivalently, the rows) of F_m form an orthonormal set in \mathbb{C}^m , by showing that for all $x, x' \in \{0, 1, \ldots, m-1\}$ we have

$$\frac{1}{m}\sum_{y=0}^{m-1}e^{2\pi i\frac{xy}{m}}e^{-2\pi i\frac{x'y}{m}} = \delta_{x,x'}.$$

Exercise 2. Verify the claim on page 119 in [1] that for a given $\omega \in [0,1)$ and integer $k \geq 2$ the following holds: with probability at least $1 - \frac{1}{2(k-1)}$, the phase estimation algorithm $(QFT_{2^n}^{-1})$ will output of the 2k closest integer multiples of $\frac{1}{2^n}$ to ω , by following the steps (after [2]):

(1) Let $x/2^n$ be the best *n*-bit approximation to ω and let $t := \omega - \frac{x}{2^n}$, where we have assumed that $0 \le t \le 2^{-2}$. Consider the amplitude

$$\alpha_z(\omega) := \frac{1}{2^n} \sum_{y=0}^{2^n - 1} e^{2\pi i (\omega - \frac{x+z}{2^n})y} \text{ for each } z = 0, 1, \dots, 2^n - 1.$$

Split the sum $\sum_{z=0}^{2^n-1} \alpha_z(\omega) |z\rangle$ into two sums, running over $0 \leq z \leq 2^{n-1}$ and $2^{n-1} + 1 \leq z \leq 2^n - 1$; then, in the last sum, change the index of notation to $z' = z - 2^n$, so that we sum over $-2^{n-1} < z' < 0$ (after which z' is relabelled back to z.) Finally, compute each sum of amplitudes $\sum_z |\alpha_z(\omega)|^2$ over the two index sets using the formula for a geometric series $\sum_{y=0}^{2^n-1} q^y$.

(2) For each z, let $\phi_z = 2\pi(t - z/2^n)$, and use that $|1 - e^{i\phi_z}| \ge 2|\phi_z|/\pi$ (because $|\phi_z| \le \pi$) to conclude that

$$|\alpha_z(\omega)|^2 \le \frac{1}{4|2^n \phi_z|^2}.$$

(3) Finally estimate $|2^n \phi_z|^2 \ge z^2$ for $-2^{n-1} < z < 0$ and $|2^n \phi_z|^2 \ge (z-1)^2$ for $0 \le z \le 2^{n-1}$ to bound the two sums of amplitudes $|\alpha_z(\omega)|^2$ above by $1/2 \sum_{z=k}^{2^n-1} \frac{1}{z^2}$, which is the probability of measuring a point $z/2^n$ not among the 2k closest integers multiples of $1/2^n$ to ω . The last sum is majorized by $\frac{1}{2(k-1)}$, which proves the claim.

References

- P. Kaye, R. Laflamme and M. Mosca, An Introduction to Quantum Computing, Oxford University Press, 2007.
- [2] M. Nielsen and Y. Chuang, Quantum Computations and Quantum Information, Cambridge University Press, 7th printing, 2015.

 $\mathbf{2}$