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Chapter 1

Introduction

Consider the ordinary differential equation (ODE)

Px.t/ D f .x.t/; t/; x.0/ D x0 (1.1)

where x0 2 Rd and f WRd � R ! Rd . Under certain conditions on f there exists
a unique solution of (1.1), and for certain types of functions f (such as when (1.1)
is separable) there are techniques available for computing this solution. However, for
most “real-world” examples of f , we have no idea how the solution actually looks like.
We are left with no choice but to approximate the solution x.t/. In this note we will only consider

a time interval t 2 Œ0; T � for
some positive endtime T > 0,
but is it fully possible to work
with negative times or even the
whole real line t 2 R.

Assume that we would like to compute the solution of (1.1) over a time interval t 2
Œ0; T � for some T > 0. The most common approach to finding an approximation of the
solution of (1.1) starts by partitioning the time interval into a set of points t0; t1; : : : ; tN ,
where tn D nh is a time step and h D T

N
is the step size. A numerical method then

computes an approximation of the actual solution value x.tn/ at time t D tn. We will The more sophisticated adaptive
time stepping methods use a step
size h which can change from
one time step to another. We will
not consider such methods in this
note.

denote this approximation by yn. The basis of most numerical methods is the following
simple computation: Integrate (1.1) over the time interval Œtn; tnC1� to get

x.tnC1/ D x.tn/C

Z tnC1

tn

f .x.s/; s/ ds: (1.2)

Although we could replace x.tn/ and x.tnC1/ by their approximations yn and ynC1,
we cannot use the formula (1.2) directly because the integrand depends on the exact
solution x.s/. What we can do, however, is to approximate the integral in (1.2) by some
quadrature rule, and then approximate x at the quadrature points. More specifically,
we consider a quadrature ruleZ tnC1

tn

g.s/ ds � .tnC1 � tn/

KX
kD1

bkg.s
.k//

where g is any function, b1; : : : ; bk 2 R are quadrature weights and s.1/; : : : ; s.K/ 2
Œtn; tnC1� are the quadrature points. Two basic requirements of this approximations is
that if g is nonnegative then the quadrature approximation is also nonnegative, and that
the rule correctly integrates constant functions. It is straightforward to see that these
requirements translate to

b1; : : : ; bK ⩾ 0 and b1 C � � � C bK D 1:
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Some popular methods include the midpoint rule (K D 1, b1 D 1, s.1/ D tnCtnC1

2
),

the trapezoidal rule (K D 2, b1 D b2 D
1
2

, s.1/ D tn, s.2/ D tnC1) and Simpson’s
rule (K D 3, b1 D b3 D

1
6

, b2 D 4
6

, s.1/ D tn, s.2/ D tnCtnC1

2
, s.3/ D tnC1).

As you might recall, these three methods have an error of O.h3/, O.h3/ and O.h4/,
respectively, where h D tnC1 � tn denotes the length of the interval. Here we use the “Big O nota-

tion”. If eh is some quantity de-
pending on a parameter h > 0
(such as the error in a numeri-
cal approximation), then eh D

O.hp/ means that there exists
some constant C > 0 such that
for small values of h, we can
bound the error as jehj ⩽ Chp .

Applying the quadrature rule to (1.2) yields

ynC1 D yn C h

KX
kD1

bkf
�
y.k/n ; s.k/n

�
(1.3)

where s.k/n 2 Œtn; tnC1� are the quadrature points and y.k/n � x
�
s
.k/
n

�
. The initial

approximation y0 is simply set to the initial data prescribed in (1.1), y0 D x0.
If the quadrature points y.k/n ; s

.k/
n are either yn; tn or ynC1; tnC1 (or some combi-

nation of these) then we can solve (1.3) for ynC1 and get a viable numerical method
for (1.1). Two such methods, the explicit and implicit Euler methods, are the topic
of Chapter 2. However, if we want to construct more accurate numerical methods
then we have to include quadrature points at times s.k/n which lie strictly between tn
and tnC1, and consequently we need some way of computing the intermediate values
y
.k/
n � x

�
s
.k/
n

�
. A systematic way of computing these points is the so-called Runge–

Kutta methods. These are methods which converge to the exact solution much faster
than the Euler methods, and will be the topic of Chapter 4.

Some natural questions arise when deriving numerical methods for (1.1): How
large is the approximation error for a fixed step size h > 0? Do the computed solutions
converge to x.t/ as h! 0? How fast do they converge, and can we increase the speed
of convergence? Is the method stable? The purpose of these notes is to answer all of
these questions for some of the most commonly used numerical methods for ODEs.

Basic assumptions
In this note we will assume f is continuously differentiable, is bounded and has
bounded first derivatives—that is, we assume that f 2 C 1.R � Rd ;Rd / and that
there are constants M > 0 and K > 0 such that

sup
x2Rd

t2R

jf .x; t/j ⩽M; (1.4a)

sup
.x;t/Rd�R

Dxf .x; t/ ⩽ K; (1.4b)

sup
.x;t/Rd�R

ˇ̌̌̌
@f

@t
.x; t/

ˇ̌̌̌
⩽ K: (1.4c)

(Here, Dxf denotes the Jacobian matrix of f ,
�
Dxf .x; t/

�
i;j
D

@f i

@xj .x; t/, and k � k
denotes the matrix norm.) In particular, f is Lipschitz in x with Lipschitz constant K,
so these assumptions guarantee that Picard iterations converge, and we can conclude
that there exists a solution for all times t 2 R. Uniqueness of the solution follows from
Lipschitz boundedness of f together with Gronwall’s lemma.

The assumptions in (1.4) can be replaced by local bounds, although one then needs
to be more careful in some of the computations in this note. In particular, the solution
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might not exist for all times. Without going into detail we state here that all the results
in this note are true (with minor modifications) assuming only local versions of the
bounds (1.4).
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Chapter 2

Euler’s methods

The absolutely simplest quadrature rule that we can use in (1.3) is the one-point method
K D 1, b1 D 1, s.1/n D tn. This yields the forward Euler or explicit Euler method

ynC1 D yn C hf
�
yn; tn

�
: (2.1)

As its name implies, this method is explicit, meaning that the approximation ynC1 at
the next time step is given by a formula depending only on the approximation yn at
the current time step. Explicit methods are easy to use on a computer because we can
type the formula more or less directly in the source code. Another popular one-point
quadrature is K D 1, b1 D 1, s.1/n D tnC1, which gives the backward Euler or implicit
Euler method

ynC1 D yn C hf
�
ynC1; tnC1

�
: (2.2)

This method is implicit in the sense that one has to solve an algebraic relation in order to
find ynC1 as a function of only yn. Both of the Euler methods can be seen as first-order
Taylor expansions of x.t/ around t D tn and t D tnC1, respectively.
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Figure 2.1: Forward (blue cir-
cles) and backward Euler (red
squares) computations for the
linear, one-dimensional ODE in
Example 2.1 up to time T D 5
using N D 30 (top) and N D
60 (bottom) time steps.

Example 2.1. Consider the ODE (1.1) with n D 1 and f .x/ D ax for some a 2 R.
The forward Euler method is

ynC1 D yn C hf .yn/ D yn
�
1C ah

�
:

The implicit Euler method is

ynC1 D yn C hf .ynC1/ D yn C ahynC1;

and solving for ynC1 yields the explicit expression

ynC1 D
yn

1 � ah
:

In both cases the method can be written as the difference equation ynC1 D byn, whose
solution is yn D bnx0. Thus, the explicit Euler method can be written as yn D .1C

ah/nx0 and the implicit Euler method as yn D .1 � ah/�nx0. Using the fact that
h D T

N
, it is a straightforward exercise in calculus to show that for either scheme, the

endtime solution yN converges to the exact value x.T / D eaT x0 as N !1.
Figure 2.1 show a computation with both schemes using the parameter a D 1 and

initial data x0 D 1. While the error in both schemes increase over time, this error
decreases as the resolution N is increased. 4
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Example 2.2. Consider an object with massm which is hanging from a spring secured
to the ceiling. We let q.t/ denote the extension of the spring at time t , and fix the
coordinate system so that q D 0 is the position at which the object is at rest, and the
positive q-axis points vertically down. Hooke’s law says that the force by the spring
on the object is proportional to the extension of the spring: F D �kq.t/, where k > 0
is the stiffness constant of the spring. Applying Newton’s second law F D ma D m Rq

gives us the second-order ODE
m Rq D �kq:

We convert this second-order equation to a system of first-order equations by intro-
ducing another unknown, the momentum p.t/ D m Pq.t/. This gives us the first-order
ODE (

Pp D �kq

Pq D 1
m
p

(2.3)

We recognize this as a Hamiltonian system with HamiltonianH.p; q/ D k
2
q2C 1

2m
p2,

which means that we can write (
Pp D � @H

@q
.p; q/

Pq D @H
@p
.p; q/;

and the functionH can be interpreted as the total energy of the system. The ODE (2.3)
is often called the harmonic oscillator.

We consider now a numerical method for (2.3). Let us first write the system as

Px D Ax; where x D
�
p

q

�
and A D

�
0 �k

1=m 0

�
:

The forward Euler method (2.1) is then

ynC1 D yn C hAyn D .I2 C hA/yn

where I2 is the identity matrix in R2�2, and the implicit Euler method (2.2) is

ynC1 D yn C hAynC1 ) ynC1 D .I2 � hA/
�1yn:

Figure 2.2 shows the numerically computed solutions for parameter valuesm D k D 1
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Figure 2.2: The p (top) and
q (bottom) components of (2.3).
Computed using the forward and
backward Euler methods using
T D 10 andN D 40.

and initial data p D 0, q D 1. The exact solution consists of sinusoidal waves (exercise
for the reader!). As can be seen in the plots, the explicit Euler method overshoots the
exact solutions, while the implicit Euler method undershoots. The same effect is seen in
Figure 2.3, where we plot the HamiltonianH.p; q/ as a function of time. Although the
total energy H.p; q/ should be constant in time, we see that the explicit Euler method
produces energy, while the implicit Euler dissipates energy over time. We will get back
to the issue of Hamiltonian systems and energy preservation in Chapter 5. 4
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Figure 2.3: The total energy
H.p; q/ for the computations in
Example 2.2.

Example 2.3. The harmonic oscillator in Example 2.2 is somewhat unrealistic, phys-
ically speaking, because there is no friction in the system. We can add friction to our
model by modeling it as a force which is proportional to the speed and which acts
opposite to the direction of travel:

Ffriction D �c Pq;
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where c ⩾ 0 is the friction coefficient. Applying Newton’s second law again yields the
ODE

m Rq D �kq � c Pq:

Introducing the unknown p D mq, we can convert this second-order ODE to the first-
order system of ODEs (

Pp D �kq � c
m
p

Pq D 1
m
p:

(2.4)

Since friction removes energy from the system (converting it to heat, sound, etc.), the
total energy H is no longer preserved, and so the above system is not Hamiltonian.
(Exercise for the reader: Compute d

dt
H.p; q/ and show that the energy H.p; q/ de-

creases over time!) The system (2.4) is called a damped harmonic oscillator. Writing
(2.4) in the form (3.1) we get

A D

�
�
c
m
�k

1
m

0

�
;

whose eigenvalues are

�� D �
c

2m
�

p
c2 � 4km

2m
; �C D �

c

2m
C

p
c2 � 4km

2m
:

If c < 2
p
km then the eigenvalues are complex and the solution will consist of sine

waves, while if c ⩾ 2
p
km then the eigenvalues are real and the solution will sim-

ply approach 0 at a speed eRe.�˙t/ D e�ct=.2m/ without oscillating. The borderline
case c D 2

p
km gives equal eigenvalues �˙ D � c

2m
, and corresponds to a so-called

critically damped oscillator.
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Figure 2.4: The p (top) and
q (bottom) components of the
damped harmonic oscillator
(2.4). Computed using the
forward and backward Euler
methods using T D 10 and
N D 40.

Figure 2.4 shows the same experiment as in Figure 2.2, but with friction coefficient
c D 1

2
. We see that the friction acts to dampen the amplitude of the oscillations.

Although this dampening effects reduces the oscillations in the explicit Euler method,
it still overshoots the exact solution. 4

2.1 Error estimates for the forward Euler method
By approximating the exact solution of an ODE by a numerical method we will in-
evitably make some error. It is important to have an idea of how large this error can
be, so that we can be sure that our approximation is not too far from the actual value.
In this section we will estimate the error in terms of the step length h > 0, and we will
see that the error decreases and goes to 0 as h! 0.

Let us consider the forward Euler method (2.1). Even if the approximation yn at
time tn for some reason were exactly equal to the exact value x.tn/, the method would
introduce a small error in the next time step. The local truncation error of a method
is precisely the error that the method makes from one time step to the next. More
specifically, the local truncation error is the quantity

�nC1 WD x.tnC1/ �
�
x.tn/C hf .x.tn/; tn/

�
(2.5)

where x.t/ is the exact solution. More generally, if we have a numerical method of the
form

ynC1 D L.yn; tn; h/

for some functionL, then the truncation error is defined as �nC1 D x.tnC1/�L.x.tn/; tn; h/.
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Lemma 2.4. The local truncation error for the forward Euler method (2.1) can be
bounded by

j�nj ⩽
K.1CM/

2
h2

for every n D 1; : : : ; N (where M is the constant in (1.4a)).

Proof. Taylor expand x.t/ around t D tn to get

x.tnC1/ D x.tn/C .tnC1 � tn/
dx

dt
.tn/C

.tnC1 � tn/
2

2

d2x

dt2
.s/

for some point s 2 Œtn; tnC1�. Using the facts that tnC1 � tn D h and that x.t/ solves
(1.1), we get

x.tnC1/ D x.tn/C hf .x.tn/; tn/C
h2

2

df .x.t/; t/

dt

ˇ̌̌
tDs

D x.tn/C hf .x.tn/; tn/C
h2

2

�
@f

@x
.x.s/; s/

dx

dt
.s/C

@f

@t
.x.s/; s/

�
D x.tn/C hf .x.tn/; tn/C

h2

2

�
@f

@x
.x.s/; s/f .x.s/; s/C

@f

@t
.x.s/; s/

�
:

Comparing with the definition of �nC1, we see that

j�nC1j D
h2

2

ˇ̌̌̌
@f

@x
.x.s/; s/f .x.s/; s/C

@f

@t
.x.s/; s/

ˇ̌̌̌
⩽
h2

2

�
KM CK

�
:

We can use the local truncation error to estimate the global error of the method,

en WD x.tn/ � yn: (2.6)

Using (2.1) and (2.5), the error at the next time step can be written as

enC1 D x.tnC1/ � ynC1

D
�
�nC1 C

�
x.tn/C hf .x.tn/; tn/

��
�
�
yn C hf .yn; tn/

�
D �nC1 C

�
x.tn/ � yn

�
C h

�
f .x.tn/; tn/ � f .yn; tn/

�
D �nC1 C en C h

�
f .x.tn/; tn/ � f .yn; tn/

�
:

We take absolute values on both sides, apply the triangle inequality and then use the
Lipschitz assumption (1.4b):

jenC1j ⩽ j�nC1j C jenj C hKjx.tn/ � ynj

D j�nC1j C
�
1C hK

�
jenj

Applying this inequality to jenj, and then iteratively to jen�1j; jen�2j; : : : ; je1j gives

jenC1j ⩽ j�nC1j C
�
1C hK

�
jenj

⩽ j�nC1j C
�
1C hK

��
j�nj C

�
1C hK

�
jen�1j

�
⩽ : : :

⩽ j�nC1j C
�
1C hK

�
j�nj C � � � C

�
1C hK

�n
j�1j C

�
1C hK

�nC1
je0j

D

nX
mD0

�
1C hK

�m
j�nC1�mj

8



where the last step follows from the fact that e0 D x.t0/� y0 D 0. We can now bound
the local truncation terms in the above sum using Lemma 2.4:

jenC1j ⩽
nX

mD0

�
1C hK

�mK.1CM/

2
h2 D

.1C hK/nC1 � 1

hK

K.1CM/

2
h2

D
.1CM/

�
.1C hK/nC1 � 1

�
2

h

where we used the formula for a geometric series. Writing nC 1 D tnC1

h
and using the

inequality 1C a ⩽ ea (which is valid for any a 2 R) gives us

jenC1j ⩽
.1CM/

�
ehKtnC1=h � 1

�
2

h ⩽
.1CM/

�
eKT � 1

�
2

h

since t0; : : : ; tN ⩽ T . We have thus proved that there is a constant C > 0 such that
jenj ⩽ Ch for every n D 1; : : : ; N . We summarize these calculations as follows. The technique in the proof of

Lemma 2.5 is called Lady Win-
dermere’s Fan, after a play by
Oscar Wilde. The term was most
likely coined by Gerhard Wanner
in the 1980’s.

Lemma 2.5. The global error for the forward Euler method (2.1) can be bounded by

jenj ⩽ Ch

for all n D 0; : : : ; N , where C > 0 is a constant that only depends on f and T .

Although the constant C in Lemma 2.5 is potentially very large, it is independent
of h. Hence, if we would like to know the exact solution up to an error of at most " > 0,
then we simply choose h ⩽ "

C
. (The number " is called the error tolerance.)

2.2 Convergence of the forward Euler method
We are now close to having proved that the forward Euler method converges to the
exact solution as h ! 0, but to state this precisely we need to specify what we mean
by “converges”. What we have at hand is a sequence of numbers y0; y1; : : : ; yN , one
for every value of h D T

N
. We need to interpret these sequences as functions which in

some way approximate the function x.t/. To this end we define the piecewise linear
interpolant There is no special reason to

choose a linear interpolant—we
might as well have chosen a
piecewise constant or cubic in-
terpolant. We consider the linear
interpolant here because it makes
some of the computations easier.

y.t/ D yn C
t � tn

h

�
ynC1 � yn

�
when t 2 Œtn; tnC1�: (2.7)

This interpolant is continuous, satisfies y.tn/ D yn for every n D 0; 1; : : : ; N , and
in-between the time steps tn; tnC1 it is linear.

Both the exact solution x.t/ and the numerical approximation y.t/ lie inC 0.Œ0; T �;Rd /,
the space consisting of continuous and bounded functions from Œ0; T � into Rd . In par-
ticular, their supremum norm

kxk1 D sup
t2Œ0;T �

jx.t/j

is bounded. As is straightforward to check, this is indeed a norm on C 0.Œ0; T �;Rd /.
We will measure convergence of numerical methods in this norm: If yh.t/ is a sequence
of functions in C 0.Œ0; T �;Rd / indexed by h > 0, then we say that yh converges to y,
or limh!0 y

h D y, if
lim
h!0
kyh � yk1 D 0:

9



Theorem 2.6. Let yh.t/ be the piecewise linear interpolant of the forward Euler
method using a time step h, and let x.t/ be the exact solution of (1.1). Then there
is a constant C > 0, not depending on h, such that

kx � yhk1 ⩽ Ch:

In particular, the forward Euler method converges to the exact solution x.t/ as h! 0.

Proof. First, note that both x and yh are Lipschitz continuous with Lipschitz constant
M . Indeed, the derivative of x is dx

dt
D f .x; t/, so jdx

dt
j D jf .x; t/j ⩽ M . For yh

we have for every t 2 Œtn; tnC1� that dy
h

dt
.t/ D

ynC1�yn

h
D f .yn; tn/ (the last step

following from (2.1)), so again jdy
h

dt
.t/j ⩽M .

Define the error function eh.t/ D x.t/ � yh.t/. Then eh.tn/ D en for every
n D 0; : : : ; N , and eh is Lipschitz continuous with Lipschitz constant at most 2M .
Hence, if, say, t 2 .tn; tnC1/ then

jeh.t/j D jeh.t/ � eh.tn/C e
h.tn/j ⩽ je

h.t/ � eh.tn/j C je
h.tn/j

⩽ 2M.t � tn/C Ch ⩽ .2M C C/h:

The result now follows from the fact that kx � yhk1 D kehk1 D supt2Œ0;T � je
h.t/j.

2.3 Convergence of the implicit Euler method
The error estimates and the proof of convergence of the implicit Euler method are quite
similar to those of the explicit Euler method, although we have to be more careful since
the method is implicit. As before the global error is en WD x.tn/ � yn, and the local
truncation error is the error that is made after a single step in the method. Thus, the
local truncation error is

�nC1 WD x.tnC1/ � znC1; where znC1 D x.tn/C hf .znC1; tnC1/:

Lemma 2.7. The local truncation error for the implicit Euler method (2.2) can be
bounded by

j�nC1j ⩽
K.M C 1/

2.1 � hK/
h2 (2.8)

as long as h < 1
K

.

Proof. As in the proof of Lemma 2.4 we Taylor expand x.t/, but this time around
t D tnC1:

x.tn/ D x.tnC1/C .tn � tnC1/
dx

dt
.tnC1/C

.tn � tnC1/
2

2

d2x

dt2
.s/

D x.tnC1/ � hf .x.tnC1/; tnC1/C
h2

2

df .x.t/; t/

dt

ˇ̌̌
tDs
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for some s 2 Œtn; tnC1�. Using this in �nC1 gives

j�nC1j D

ˇ̌̌̌
x.tn/C hf .x.tnC1/; tnC1/ �

h2

2

df .x.t/; t/

dt

ˇ̌̌
tDs
� x.tn/ � hf .znC1; tnC1/

ˇ̌̌̌
⩽ h

ˇ̌
f .x.tnC1/; tnC1/ � f .znC1; tnC1/

ˇ̌
C
h2

2

ˇ̌̌̌
df .x.t/; t/

dt

ˇ̌̌
tDs

ˇ̌̌̌
⩽ hKjx.tnC1/ � znC1j C

h2

2

�
KM CK

�
⩽ hKj�nC1j C

h2

2

�
KM CK

�
:

(Note that, unlike the proof for the forward Euler scheme, the truncation error �nC1
appears in the final expression above. This happens because the scheme is implicit.)
Solving for j�nC1j gives (2.8).

Once the estimate of the local truncation error (2.8) is in place, the proof of conver-
gence for the implicit Euler method follows in the same way as for the explicit Euler
method. We state the results below and leave the proofs as exercises for the reader.

Lemma 2.8. Assume that h ⩽ 1
2K

. Then the global error for the backward Euler
method (2.2) can be bounded by

jenj ⩽ Ch

for all n D 0; : : : ; N , where C D 3.M C 1/.eKT � 1/ is a constant that only depends
on f and T .

Theorem 2.9. Let yh.t/ be the piecewise linear interpolant of the backward Euler
method using a time step h, and let x.t/ be the exact solution of (1.1). Then there is a
constant C > 0, only depending on f and T , such that

kx � yhk1 ⩽ Ch:

In particular, the backward Euler method converges to the exact solution x.t/ as h!
0.

11



Chapter 3

Stiff problems and linear
stability

As shown in the previous chapter, both the explicit and implicit Euler methods converge
to the exact solution as h! 0, and the error at any time t 2 Œ0; T � can be bounded by
Ch for some constant C > 0. Hence, to guarantee that the error is smaller than some
error tolerance " > 0, we simply have to choose h ⩽ "

C
. There is a catch, though:

The constant C is proportional to eKT , where K is the Lipschitz constant of f , and in
many real-world applications this constant can be very large. Such problems are often
characterized by a sensitivity to changes in the initial data, or the existence of features
in the solution which change at very different time scales (such as two sine waves with
very different frequency). Problems with some or all of these characteristics are called
stiff.

In this chapter we will study stiff linear ODEs

Px D Ax; x.0/ D x0 (3.1)

(for A 2 Rd�d and x0 2 Rd ). Recall that the system (3.1) is linearly stable if the
solution is bounded for all t 2 R, regardless of the choice of x0 2 Rd . Our aim will
be to find out how different numerical methods perform on stiff linear problems, and
under what conditions the numerical method is also linearly stable.

3.1 One-dimensional problems
a

b

Figure 3.1: The set C� of all
� D a C ib such that (3.2) is
linearly stable (in blue).

To begin with we consider the linear, one-dimensional ODE

Px D �x; x.0/ D x0 (3.2)

for some � 2 C and x0 2 R. (The reason for allowing complex � will soon be
apparent.) Writing � D aC ib for a; b 2 R, the solution of this problem is

x.t/ D e�tx0 D e
at
�

cos.bt/C i sin.bt/
�
x0:

Since jx.t/j D eat jx0j, we see that the problem (3.2) is linearly stable if and only if
a ⩽ 0:

� 2 C� D
˚
z 2 C W Re.z/ ⩽ 0

	
(3.3)

12



(for otherwise eat will grow towards C1 as t increases); see Figure 3.1. If jRe.�/j is
large then the corresponding solution x.t/ goes very quickly towards 0 or ˙1, while
if jIm.�/j is large then the solution will oscillate rapidly. We say that the ODE (3.2) is
stiff if either of these is the case—that is, if j�j is large1.

Example 3.1. Consider the stiff ODE (3.2) with � D �100 and x0 D 1, whose
solution is x.t/ D e�100t . Figure 3.2(a)–(c) shows computations with the explicit
Euler method for three different choices of h. On the coarsest mesh (Figure 3.2(a))
the method jumps erratically between positive and negative values and reaches values
of 107. Increasing the resolution (Figure 3.2(b)) improves the solution, but still shows
some initial oscillations. Only on the finest resolution (Figure 3.2(c)) is the numerical
solution qualitatively correct.

Figure 3.2(d)–(f) shows the same computation but with the implicit Euler method.
Unlike the explicit method, the implicit method shows qualitatively correct behavior
on all the three resolutions. The error estimate for the implicit method, Lemma 2.8,
bounds the error by .M C 1/.eKT � 1/h, and since K D 100 and T D 1, the term
eKT � 1043 is huge. Thus, the implicit method provides a reasonable, qualitatively
correct solution for step sizes h much larger than what the error estimate seems to
require. 4
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(f) h D 1
120

Figure 3.2: Forward Euler (top row) and backward Euler (bottom row) for the stiff
problem in Example 3.1 up to time T D 1.

To understand why the explicit Euler method fails and the implicit method succeeds
in the above example, we write first both equations in the form

ynC1 D R.�/yn; y0 D x0; (3.4)

where � D h�, and R is the stability function of the method. From Example 2.1 we
see that the stability function for the explicit Euler method is given by R.�/ D 1C �

and for the implicit Euler method it is R.�/ D .1 � �/�1.
1Of course, “large” depends on your point of view. Here, we mean that T j�j � 1. Since (3.2) states

that the rate of change of the solution is proportional to j�j, the number T j�j gives an indication of the net
change in the solution over the time interval Œ0; T �.
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Definition 3.2. We say that the difference equation (3.4) is linearly stable if yn is
bounded for any initial data—that is, for every x0 2 R there exists some M > 0 such
that jynj ⩽M for all n 2 N.

The solution of the difference equation (3.4) is yn D R.�/nx0, so jynj D jR.�/jnjx0j.
Thus, the method is linearly stable if and only if jR.�/j ⩽ 1.

Definition 3.3. The region of absolute stability, or simply the stability region, of the
method (3.4) is the set

D D
˚
� 2 C W jR.�/j ⩽ 1

	
:

The method (3.4) is A-stable if C� � D.

Recalling that the ODE (3.2) is linearly stable if and only if � 2 C�, it is clear
that a numerical method is A-stable if and only if the method is linearly stable for any
h > 0 whenever � 2 C�. A method which is stable for any choice of step size h > 0

is often called unconditionally stable.

a

b

(a) Explicit Euler

a

b

(b) Implicit Euler

Figure 3.3: Stability regions for
the Euler methods (in blue).

We can now answer the question of linear stability of the explicit and implicit Euler
methods. Consider a linearly stable ODE (1.1), so that � 2 C�. For the explicit Euler
method we have R.�/ D 1C �, so the stability region for the explicit Euler method is
the set

DFE D
˚
� 2 C W j� C 1j ⩽ 1g:

For the implicit Euler method we haveR.�/ D .1��/�1, and since jR.�/j D j1��j�1

we get the stability region

DIE D
˚
� 2 C W j� � 1j ⩾ 1g:

(The colored regions in Figure 3.3 show the stability regions for both Euler methods.)
Recalling that the number � in (3.4) is given by � D h�, we see that the implicit Euler
method is linearly stable for any h > 0, while the explicit Euler method is linearly
stable only for small values of h, when jh�C1j ⩽ 1. Hence, the implicit Euler method
is A-stable, while the explicit Euler method is only conditionally stable—it is only
stable for certain (small) values of the step size h.

If � is a real, negative number then the explicit Euler method is linearly stable for
h� 2 Œ�2; 0�, or h ⩽ 2

j�j
. In Example 3.1 we had � D �100 so the value h D 1

40
in

Figure 3.2(a) lies outside the region of linear stability.

3.2 Multi-dimensional problems
We consider next a general d -dimensional linear system (3.1). For the sake of simplic-
ity we assume that A is diagonalizable and we let �1; : : : ; �d 2 C be the eigenvalues
and v1; : : : ; vd 2 Cd the corresponding eigenvectors of A. The exact solution of (3.1)
is then

x.t/ D ˛1e
�1tv1 C � � � C ˛de

�d tvd (3.5)

where ˛1; : : : ; ˛d 2 C are such that ˛1v1C� � �C˛dvd D x0. If we write �k D akCibk
for k D 1; : : : ; d then the contribution ˛ke�k tvk from the kth eigenpair consists of a
scaling eak t and a rotation with frequency bk . Thus, if the numbers a1; : : : ; ad and
b1; : : : ; bd are of very different magnitude, then the formula (3.5) is a sum of terms
which “live” on several different time scales. We say that the linear system (3.1) is
stiff if the real and imaginary parts of the eigenvalues of A differ by several orders of

14
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Figure 3.4: The p (left) and q (right) components of the damped harmonic oscillator
(2.4). Computed using the forward Euler (top row) and backward Euler (bottom row)
methods using T D 10, N D 40 and k D 10.

magnitude, or if they are much larger in magnitude than 1
T

. Note that in the scalar case
d D 1, this definition is equivalent to the one given in Section 3.1.

Recall that the linear system (3.1) is spectrally stable if Re.�k/ 2 C� for all eigen-
values �1; : : : ; �d , and is linearly stable if all solutions are bounded for all t . It can be
shown that when A is diagonalizable, these two notions of stability are equivalent.

Example 3.4. Consider the damped harmonic oscillator from Example 2.3, but assume
that the spring is relatively stiff, say, k D 10. From the computation in Example 2.3 we This example is (probably) the

origin of the term stiff ODE.
get eigenvalues �˙ D �14 ˙

q
�10C 1

16
� �

1
4
˙3:15i , so the solution will contain a

dampening term e�t=4 as well as sine waves with a period of approximately 2�
3:15
� 2.

In particular, the real parts Re.�˙/ D �14 are negative so the ODE is linearly stable.
Figure 3.4 shows the solutions computed by the explicit and implicit Euler methods

using the same parameters as in Example 2.3, but with k D 10. While the explicit
method is completely wrong, the implicit method is qualitatively correct, although it
fails to capture the fine-scaled features of the solution. To obtain reasonable results
with the explicit method we have to increase the resolution to N D 400 time steps,
shown in Figure 3.5. 4

Example 3.5. Consider a stiff spring with a large friction coefficient, say, k D 1000

15
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Figure 3.5: The p (left) and q (right) components of the damped harmonic oscillator
(2.4). Computed using the forward and backward Euler methods using T D 10, N D
400 and k D 10.

and c D 1001. If m D 1 as before then

A D

�
�1001 �1000

1 0

�
) �� D �1000; �C D �1; v� D

�
�1

1000

�
; vC D

�
�1

1

�
:

The exact solution is
x.t/ D ˛�e

�1000tv� C ˛Ce
�tvC

where, as before, ˛˙ are such that x0 D ˛�v� C ˛CvC. We see that if ˛�; ˛C are
both nonzero then the solution “lives” on two different time scales: the rapid time
scale 1000t and the slow time scale t . If ˛� D 0, however, the solution is simply
x.t/ D ˛Ce

�tvC, and it might seem that the problem is non-stiff. Figure 3.6 shows
the computed solution when x0 D vC. The solution should converge to zero at the
moderate pace e�t , but while the implicit method computes the correct solution, the
explicit method suddenly jumps at around t � 9, and quickly reaches values of around
108. 4

From the two examples above we can deduce two things. First, the presence of
moderately large eigenvalues puts strict restrictions on the step size for the explicit
(but not the implicit) Euler method. Second, even if x0 is such that the solution does
not “see” the large eigenvalues (that is, the solution lies entirely in the eigenspace
corresponding to small eigenvalues), small round-off errors might cause instabilities in
the explicit (but not the implicit) Euler method.

To study the linear stability of the explicit and implicit Euler methods we first per-
form a change of variables for the equation (3.1): If u.t/ D P�1x.t/ (where P is the
matrix of eigenvectors) then u solves the ordinary differential equation

Pu D ƒu; u.0/ D P�1x0;

whose solution is u.t/ D etƒP�1x0. Letting yn be the forward Euler approximation
of (3.1), the sequence wn D P�1yn solves the difference equation

wnC1 D wn C hƒwn D .Id C hƒ/wn; w0 D P
�1x0:
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Figure 3.6: Forward (top row) and backward (bottom row) Euler computations for the
damped harmonic oscillator (2.4) using T D 10, N D 40, k D 1000 and c D 1001.

Just as for the differential equation, we have decoupled the components of yn, yielding
d scalar difference equations

wknC1 D .1C h�k/w
k
n : (3.6)

Since yn stays bounded if and only if w1n; : : : ; w
d
n stay bounded, we see that the forward

Euler method for (3.1) is linearly stable if and only if the forward Euler method (3.6)
for each of the unknowns u1.t/; : : : ; ud .t/ is linearly stable. In particular, the forward
Euler method for (3.1) is linearly stable if and only if

j1C h�kj ⩽ 1 8 k D 1; : : : ; d:

In a similar fashion we find that the implicit Euler method is linearly stable if and only
if

j1 � h�kj ⩾ 1 8 k D 1; : : : ; d:

In particular, if (3.1) is linearly stable, that is, �1; : : : ; �d 2 C�, then the implicit Euler
method is linearly stable for any h > 0.
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Chapter 4

Runge–Kutta methods

While the explicit and implicit Euler methods work just fine in a large number of ap-
plications, they only converge at a rate of O.h/. This is not an issue for the relatively
simple problems considered in the previous chapters, but the amount of work required
to get below a given error tolerance " > 0 could become insurmountable if, for in-
stance:

� the number of dimensions d is large

� the end time T is large

� the ODE is stiff

� the error tolerance " is small

� the computational resources available are limited.

(While the last point is less of a problem today, it was a big factor when many of the
methods discussed here were developed several decades ago.) This motivates develop-
ing numerical methods which converge at a speed O.hp/ for p > 1.

Many of the ideas developed in Chapter 2 will carry over to the methods developed
in this chapter. Most importantly, the principle of Lady Windermere’s Fan—the con-
version of a truncation error estimate to a global error estimate—still applies. Let us
consider a (possibly implicit) numerical method for (1.1) of the form

ynC1 D yn C hˆ
�
yn; ynC1; tn; h

�
: (4.1)

Then the local truncation error of the method is defined as

�nC1 WD x.tnC1/ � znC1; where znC1 D x.tn/C hˆ
�
x.tn/; znC1; tn; h

�
;

which can be interpreted as the error that the method makes from one time step to the
next. The global error of the method is en WD x.tn/ � yn.

Lemma 4.1 (Lady Windermere’s Fan). Assume that the functionˆ in (4.1) is Lipschitz
continuous in the two first variables. Assume moreover that j�nj ⩽ ChpC1 for some
p 2 N and some C > 0 which is independent of h. Then jenj ⩽ QChp .
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4.1 Second-order methods
As explained in Chapter 1 we can write

x.tnC1/ D x.tn/C

Z tnC1

tn

f .x.s/; s/ ds: (4.2)

The above integral depends on the exact solution and hence must be approximated by
some quadrature rule, that is, some function ˆ such that

x.tnC1/ � x.tn/ D

Z tnC1

tn

f .x.s/; s/ ds � hˆ
�
x.tn/; x.tnC1/; tn; h

�
:

Assume that the quadrature rule ˆ is pth order accurate, so that

hˆ
�
x.tn/; x.tnC1/; tn; h

�
D

Z tnC1

tn

f .x.s/; s/ ds CO.hpC1/ (4.3)

for some p 2 N, and let us assume that ˆ is Lipschitz continuous,ˇ̌
ˆ
�
x1; x2; t; h

�
�ˆ

�
y1; y2; t; h

�ˇ̌
⩽ Lˆ

�
jy1 � x1j C jy2 � x2j

�
8 x1; x2; y1; y2

(4.4)
for some Lˆ > 0. If we use ˆ in the numerical method (4.1) then the truncation error
will be

j�nC1j D
ˇ̌
x.tnC1/ � znC1

ˇ̌
D
ˇ̌
x.tnC1/ �

�
x.tn/C hˆ

�
x.tn/; znC1; tn; h

��ˇ̌
D

ˇ̌̌̌Z tnC1

tn

f .x.s/; s/ ds � hˆ
�
x.tn/; znC1; tn; h

�ˇ̌̌̌
(by (4.2))

⩽

ˇ̌̌̌Z tnC1

tn

f .x.s/; s/ ds � hˆ
�
x.tn/; x.tnC1/; tn; h

�ˇ̌̌̌
C h

ˇ̌
ˆ
�
x.tn/; x.tnC1/; tn; h

�
�ˆ

�
x.tn/; znC1; tn; h

�ˇ̌
(triangle inequality)

⩽ ChpC1 C hLˆ
ˇ̌
x.tnC1/ � znC1

ˇ̌
(by (4.3) and (4.4))

D ChpC1 C hj�nC1j

Solving for �nC1 gives

j�nC1j ⩽
C

1 � hLˆ
hpC1:

If, say, h ⩽ 1
2Lˆ

then the term in front of hpC1 is less than 2C . Hence, applying
Lemma 4.1 we get a global error of en D O.hp/.

4.1.1 The Crank–Nicolson method
The simplest quadrature rule which is more than first-order accurate is perhaps the
trapezoidal rule, Z tnC1

tn

g.s/ ds D
h

2

�
g.tn/C g.tnC1/

�
CO.h3/:
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Inserting g.s/ D f .x.s/; s/, we obtain the approximation

x.tnC1/ D x.tn/C
h

2

�
f .x.tn/; tn/C f .x.tnC1/; tnC1/

�
CO.h3/: (4.5)

The resulting numerical method can be written in the following form:8̂<̂
:
k1 D f .yn; tn/

k2 D f .ynC1; tnC1/

ynC1 D yn C
h
2
.k1 C k2/:

(4.6)

This is the Crank–Nicolson method. Note that this method is implicit, since k2 depends
on ynC1 and vice versa.

4.1.2 Heun’s method
The Crank–Nicolson method (4.6) is implicit and can therefore be difficult to compute
with if f is nonlinear. The troublesome term is f .x.tnC1/; tnC1/ in the trapezoidal
rule (4.5). A common trick is to replace the exact value x.tnC1/ by an approximate
value, such as the forward Euler computation

x.tnC1/ D x.tn/C hf .x.tn/; tn/CO.h
2/:

Using this in the right-hand side of (4.5) gives (denoting xn D x.tn/ and xnC1 D
x.tnC1/)

xnC1 D xn C
h

2

�
f .xn; tn/C f .xnC1; tnC1/

�
CO.h3/

D xn C
h

2

�
f .xn; tn/C f

�
xn C hf .xn; tn/CO.h

2/; tnC1

��
CO.h3/

D xn C
h

2

�
f .xn; tn/C f

�
xn C hf .xn; tn/; tnC1

�
CO.h2/

�
CO.h3/

D xn C
h

2

�
f .xn; tn/C f

�
xn C hf .xn; tn/; tnC1

��
CO.h3/:

(In the third line we have used the Lipschitz continuity of f to take theO.h2/ term out
of f .) The resulting second-order, explicit method can be written as8̂<̂

:
k1 D f .yn; tn/

k2 D f .yn C hk1; tn C h/

ynC1 D yn C
h
2
.k1 C k2/:

(4.7)

This is Heun’s method or the improved Euler method.

4.1.3 The modified Euler method
Another third-order accurate quadrature is the midpoint rule,Z tnC1

tn

g.s/ ds D hg.tnC1=2/CO.h
3/;
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where tnC1=2 D
tnCtnC1

2
. Inserting g.s/ D f .x.s/; s/ gives the approximation

x.tnC1/ � x.tn/ D f .x.tnC1=2/; tnC1=2/CO.h
3/:

We can use the same trick as for Heun’s method to approximate the midpoint value
x.tnC1=2/ with the forward Euler method:

x.tnC1=2/ D x.tn/C
h

2
f .x.tn/; tn/CO.h

2/:

We find that (denoting xn D x.tn/ and xnC1=2 D x.tnC1=2/)Z tnC1

tn

f .x.s/; s/ ds D hf
�
xnC1=2; tnC1=2

�
CO.h3/

D hf
�
xn C

h
2
f .xn; tn/CO.h

2/; tnC1=2

�
CO.h3/

D hf
�
xn C

h
2
f .xn; tn/; tnC1=2

�
C hO.h2/CO.h3/

D hf
�
xn C

h
2
f .xn; tn/; tnC1=2

�
CO.h3/:

We can conclude that if we define

ˆ.yn; tn; h/ D f
�
yn C

h
2
f .yn; tn/; tnC1=2

�
then the method (4.1) has a global error of O.h2/. We can write out the resulting
method as follows: 8̂<̂

:
k1 D f .yn; tn/

k2 D f
�
yn C

h
2
k1; tn C

h
2

�
ynC1 D yn C hk2:

(4.8)

This method is often called the modified Euler method.

4.2 Butcher tableaus
The observant reader will have noticed that we have written all of the second-order
accurate methods (4.6), (4.7), (4.8) in a similar manner. In fact, all three methods can
be written in the following form:8̂̂<̂

:̂
k1 D f

�
yn C h

P2
jD1a1jkj ; tn C c1h

�
k2 D f

�
yn C h

P2
jD1a2jkj ; tn C c2h

�
ynC1 D yn C h

P2
iD1biki

(4.9)

for some coefficients aij , bj and cj . These coefficients can be neatly collected in what
is called a Butcher tableau After the New Zealand mathe-

matician John Charles Butcher
(1933–).c1 a11 a12

c2 a21 a22
b1 b2

The Butcher tableaus of the second-order methods in Section 4.1 are as follows:
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0 0 0

1 1=2 1=2
1=2 1=2

Crank–Nicolson

0 0 0

1 1 0
1=2 1=2

Heun’s method

0 0 0
1=2 1=2 0

0 1

Modified Euler

These methods are examples of two-stage Runge–Kutta methods. More generally, an After the German mathemati-
cians Carl David Tolmé Runge
(1856–1927) and Martin Wil-
helm Kutta (1867–1944).

s-stage Runge–Kutta method is a method of the form8̂̂̂̂
<̂̂
ˆ̂̂̂:
k1 D f

�
yn C h

Ps
jD1a1jkj ; tn C c1h

�
:::

ks D f
�
yn C h

Ps
jD1asjkj ; tn C csh

�
ynC1 D yn C h

Ps
iD1biki

(4.10)

where aij , bj , cj are coefficients that can be collected in a Butcher tableau:

c1 a11 � � � a1s
:::

:::
: : :

:::

cs as1 � � � ass
b1 � � � bs

or even more compactly:

c A

bT

where A D
�
aij
�s
i;jD1

is the Runge–Kutta matrix, b D
�
bi
�s
iD1

is the vector of Runge–

Kutta weights and c D
�
ci
�s
iD1

is the vector of Runge–Kutta nodes.
From (4.10) we see that if aij D 0 for every j ⩾ i then ki only depends on

preceding values k1; : : : ; ki�1, which implies that the method is explicit. Conversely,
if aij ¤ 0 for some j ⩾ i then the expression for ki depends either on ki itself or some
unknown, yet to be computed value kj , and hence the method is implicit. Hence, by
checking whether the diagonal and upper-diagonal entries of the Runge–Kutta matrix
are zero, we quickly determine if the method is explicit or implicit. In this way we
easily see that the Crank–Nicolson method is implicit, while Heun’s and the modified
Euler methods are explicit.

Example 4.2. The explicit and implicit Euler methods are one-stage Runge–Kutta
methods with Butcher tableaus

0 0

1
and

1 1

1

respectively. 4

Example 4.3. Runge and Kutta’s original method (often simply referred to as the
Runge–Kutta method) is the fourth-order accurate, four-stage method with Butcher
tableau

0
1=2 1=2
1=2 0 1=2

1 0 0 1
1=6 1=3 1=3 1=6

(here a missing entry means 0). 4
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4.3 Consistency and order of accuracy
Given a Runge–Kutta method, how do we determine its order? How do we construct
a method which is, say, pth order accurate? How many stages s are required for a pth
order explicit Runge–Kutta method? The first question is actually not so easy to an-
swer; the second question requires some advanced graph theory; and the third question
is an unsolved problem! In this section we will only develop some rudimentary ideas
and basic consistency requirements, and we refer to more thorough treatises such as
[Ise08, Chapter 3] or [But16] for further details.

The basic idea to deriving a pth order Runge–Kutta method is the same as for the
second-order methods in Section 4.1. Begin by applying a quadrature rule (such as
Gauss quadrature) to approximate

x.tnC1/ D x.tn/C

Z tnC1

tn

f
�
x.s/; s

�
ds

� x.tn/C h

sX
iD1

bif
�
x
�
tn C hci

�
; tn C hci

�
where tn C hci 2 Œtn; tnC1� are the quadrature points and bi the quadrature weights. A
basic requirement of the quadrature weights is that

sX
iD1

bi D 1: (4.11)

This guarantees that the quadrature rule is exact whenever f is constant, which is a
necessary requirement for the method to be at least first-order accurate.

Let yn and ynC1 be approximations of x.tn/ and x.tnC1/, respectively, and let y.i/n
approximate x

�
tn C hci

�
. Then

ynC1 D yn C h

sX
iD1

bif
�
y.i/n ; tn C hci

�
(4.12a)

gives an approximation of x.tnC1/. Using the fact that

x
�
tn C hci

�
D x.tn/C

Z tnChci

tn

f
�
x.s/; s

�
ds

we can express y.i/n by approximating the above integral using another quadrature rule.
Since using quadrature points other than tn C hc1; : : : ; tn C hcs would introduce new,
unknown values of x, we stick to these quadrature points:

y.i/n D yn C hci

sX
jD1

Qaijf
�
y.j /n ; tn C hcj

�
(4.12b)

(the factor hci is the length of the integration domain), where Qai1; : : : ; Qais are the
quadrature weights to compute y.i/n . Just as in (4.11), a basic consistency require-
ment for the quadrature weights Qaij is

Ps
jD1 Qaij D 1. Defining aij D ci Qaij , this

requirement translates to
sX

jD1

aij D ci for every i D 1; : : : ; s: (4.13)
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Putting together (4.12a) and (4.12b) gives exactly the Runge–Kutta method (4.10).
Note that all of the Butcher tableaus given in Section 4.2 satisfy the consistency re-
quirements (4.11) and (4.13).

So what is the order of accuracy of a given Runge–Kutta method? Unfortunately
there is no straightforward method to answer this question. One approach consist of
Taylor expanding f and x around each quadrature point, but this quickly becomes too
messy for any order p greater than 2. For a systematic (but quite technical) method of
using graphs to express Taylor expansions, see [But16].

For explicit Runge–Kutta methods it is known that one needs at least s D p stages
to obtain pth order accuracy. In fact, if p ⩾ 5 then one needs s ⩾ p C 1 stages, and
this trend continues for larger values of p: The number of stages s grows faster than
p. For implicit Runge–Kutta methods, on the other hand, it is known that the order
of accuracy of an s-stage method is at most p D 2s, and for every s 2 N there is in
fact a unique 2s-order accurate, s-stage Runge–Kutta method. (This is analogous to
the uniqueness of the s-point, .2s C 1/th order accurate Gauss quadrature rule.) Thus,
there is a tradeoff here: An implicit, s-stage method is potentially much more accurate
than an explicit s-stage method, but on the other hand, implicit methods require solving
implicit equations and are hence much more computationally demanding.

4.4 Linear stability of Runge–Kutta methods
In this section we investigate the linear stability of Runge–Kutta methods. We will
see that for these methods, the general rule of thumb of stability still holds: implicit
methods are stable regardless of the timestep h, while explicit methods are only stable
for sufficiently small h.

Recall from Chapter 3 that a numerical method is linearly stable if the computed
solution stays bounded for all times when solving the linear ODE

Px D �x

for some � 2 C. We insert the choice f .x/ D �x into the general form of a Runge–
Kutta method (4.10) to get 8̂̂̂̂

<̂
ˆ̂̂:
k1 D �yn C �h

Ps
jD1a1jkj

:::

ks D �yn C �h
Ps
jD1asjkj

ynC1 D yn C h
Ps
iD1biki :

(4.14)

We can write the above in matrix notation:

k D 1�yn C �hAk; ynC1 D yn C hb
Tk

where 1 and k are the vectors 1 D
�
1 1 � � � 1

�T and k D
�
k1 k2 � � � ks

�T, and b is the
vector of Runge–Kutta weights. Solving the above for k gives k D .I � �A/�11�yn,
where we denote � D �h, as before. This gives ynC1 D ynR.�/, where R.�/ D
1C �bT.I � �A/�11 is the stability function for the Runge–Kutta method (4.14) (see
Section 3.1). We can simplify this expression even further:

Lemma 4.4. The stability function for the s-step Runge–Kutta method (4.14) is

R.�/ D
det

�
I � �AC �1bT

�
det

�
I � �A

� : (4.15)
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The proof of the above lemma is outside the scope of these notes, but the idea is
to use Cramer’s rule to invert the matrix I � �A (see [HW96, Section IV.3]). As an
exercise, try to use the formula (4.15) to compute the stability functions for the explicit
and implicit Euler methods (see Example 4.2) and see if you get the same results as in
Chapter 3.

Let us first assume that the method in question is explicit, so that aij D 0 for all
j ⩾ i . Then I � �A is a lower-triangular matrix with ones along the diagonal, so
det

�
I � �A

�
D 1. The numerator in (4.15) is the determinant of an s � s matrix, so it

follows that the stability function for an explicit Runge–Kutta method is an sth order
polynomial,

R.�/ D 1C d1� C d2�
2
C � � � C ds�

s

for some coefficients d1; : : : ; ds 2 R. The classical result of Liouville (see any text-
book on complex analysis) states that every non-constant polynomial is unbounded.
Hence, the stability region

D D
˚
� 2 C W jR.�/j ⩽ 1

	
of any explicit Runge–Kutta method is a bounded set, and in particular, the method is
only stable for certain values of h.

If the Runge–Kutta method is in implicit then it is generally not the case that
det

�
I � �A

�
equals 1; instead it will be some sth order polynomial of �. Consequently,

the stability function (4.15) is a rational polynomial (that is, one polynomial divided
by another) which in many cases is bounded for any value of �.

Figure 4.1 shows the stability functions and stability regions for the four different
Runge–Kutta methods encountered in this chapter. We see that the stability functions
of the explicit methods (Figures 4.1(b)–(d)) are polynomials, and that their stability
regions are bounded sets. Hence, if the problem is stiff—that is, if j�j � 1—then the
step size h must be very small in order to get a stable method. On the other hand, the
stability function of the implicit Crank–Nicolson method (Figure 4.1(a)) is a rational
polynomial, and the stability region is D D C�. It follows that the Crank–Nicolson
method is A-stable.
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R.�/ D 2C�
2��

(a) Crank–Nicolson

R.�/ D 1C � C �2

2

(b) Heun’s method

R.�/ D 1C � C �2

2

(c) Modified Euler

R.�/ D 1C � C �2

2
C

�3

6
C

�4

24

(d) The classic R–K 4 method

Figure 4.1: Stability functions and stability regions (in blue) for different Runge–Kutta
methods.
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Chapter 5

Symplectic methods

Recall that a Hamiltonian system is an ordinary differential equation which can be
written in the form (

Pp D � @H
@q
.p; q/

Pq D @H
@p
.p; q/

(5.1)

for some functionH D H.p; q/. For simplicity we will assume in this chapter that the
unknown functions p; q are scalar-valued, but emphasize that everything in this chapter
can be generalized to vector-valued unknowns.

We have already seen one example of a Hamiltonian system in Example 2.2, the
harmonic oscillator. Other examples of Hamiltonian systems include the equations of
motion of a planetary system or of particles in a particle accelerator. In many applica-
tions it is important to be able to solve these systems very accurately for a long time.
For instance, an astrophysicist could ask whether an asteroid in our solar system will
collide with Earth sometime during the next fifty years; any small error in the compu-
tation might give a false negative. Or a particle physicist at CERN could ask whether
a beam of particles will make it through the Large Hadron Collider particle accelerator
over the next few seconds; the particles pass through each of the 1232 magnets in the
the 27 km long tunnel more than 11.000 times per second, so any inaccuracies will
quickly multiply and give an incorrect answer.

An easy solution would be to use a high-order accurate numerical method, such
as a Runge–Kutta method. But very high-dimensional or long-time problems might
still be too computationally expensive for the desired accuracy, even with a high-order
accurate method.

0 2 4 6 8 10

t

-2

-1

0

1

2

p

Forward Euler
Backward Euler
Heun's method
Exact solution

(a) T D 10

0 50 100 150 200

t

-2

-1

0

1

2

p

Heun's method
Exact solution

(b) T D 200

Figure 5.1: The p component
in the harmonic oscillator (2.3),
computed with Heun’s method.

Example 5.1. As we saw in Example 2.2, the explicit and implicit Euler methods were
quite inaccurate when simulating the harmonic oscillator (cf. Figure 2.2). Figure 5.1(a)
shows the same problem computed with Heun’s method. It’s clear that the second-
order method gives a much better approximation. But what if we want to compute for
a longer time, say, until T D 200? As shown in Figure 5.1(b), the method slowly,
but surely starts to overestimate the amplitude of the oscillator, and at the end of the
simulation the error is of the order of 1. 4

By simply using a higher-order accurate method we are treating the ODE (5.1) just
like any other ODE. As we will see in this chapter, we will gain much more in accuracy
if we take advantage of the very special Hamiltonian structure (5.1).
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5.1 Symplectic maps
Let x D .p q/T be the vector of unknowns and let ' be the flow of the ODE (5.1),
so that 't .x/ solves (5.1) with initial data x 2 R2. In this section we will see that, in
addition to preserving the HamiltonianH.'t .x// over time, the flow ' has the property
of being area preserving.

If x1 D .p1 q1/T and x2 D .p2 q2/T are given vectors then the area of the parallel-
ogram spanned by x1 and x2 is given by

!.x1; x2/ D p1q2 � p2q1 D x
T
1Jx2; where J D

�
0 1

�1 0

�
:

Let now gWR2 ! R2 be some given function, and assume for the moment that g is
linear, so that g.x/ D Ax for some A 2 R2�2. We say that g (or A) is symplectic if it
preserves the area of all such paralellograms, that is, if

!
�
g.x1/; g.x2/

�
D !.x1; x2/ 8 x1; x2 2 R:

Inserting g.x/ D Ax, we see that g is symplectic if and only if xT
1A

TJAx2 D x
T
1Jx2T

for all x1; x2 2 R2, which is possible if and only if

ATJA D J: (5.2)

Problem 5.1. Show that (5.2) holds if and only if det.A/ D 1.

Problem 5.2. Let

A D

�
cos � � sin �
sin � cos �

�
; B D

�
2 0

0 1=2

�
; C D

�
2 0

0 2

�
for some � 2 Œ0; 2�/. Show that A and B are symplectic, and that C is not. For each
of the matricesD D A;B;C , a drawing of some set� � R2 (say, the unit square) and
its image D� D fDx W x 2 �g, and interpret your results.

Let now gWR2 ! R2 be an arbitrary, possibly nonlinear function. Noting that the
matrix A above is the Jacobian of g, we say that g is symplectic if the identity (5.2)
is true for the matrix A D rg.x/, for every x 2 R2. Although we will not go into
details here, it is possible to use tools from differential geometry to show that g being
symplectic is the same as saying that g preserves area—that is, if � � R2 is some
bounded set, then � and g.�/ D fg.x/ W x 2 �g have the same area.

We now investigate the flow 't .x/ of the Hamiltonian system (5.1). First, observe
that we can write the system (5.1) as

Px D �JrH.x/ (5.3)

where rH.p; q/ D
�
@H
@p
.p; q/ @H

@q
.p; q/

�T.

Theorem 5.2 (Poincaré, 1899). Let ' be the flow of the Hamiltonian system (5.1).
Then for every t 2 R, the function 't .x/ is symplectic.

Proof. We need to check that for every fixed time t 2 R and x 2 R2, the matrix
A D r't .x/ satisfies (5.2). If t D 0 then 't .x/ D x, so A D I , which clearly satisfies
(5.2). For a general t 2 R we see from (5.3) that

d

dt
r't .x/ D r

�
d
dt
't .x/

�
D �r

�
JrH.'t .x//

�
D �Jr2H.'t .x//r't .x/:
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(Here, r2H is the Hessian matrix of H , consisting of all second-order partial deriva-
tives of H .) Hence, if A D r't .x/ then

d

dt

�
ATJA

�
D

d

dt

�
r't .x/

TJr't .x/
�

D
�
d
dt
r't .x/

�T
Jr't .x/Cr't .x/

TJ
�
d
dt
r't .x/

�
D �AT

r
2H.'t .x//

TJ TJA � ATJJr2H.'t .x//A

D 0

because J�1 D J T D �J . Since ATJA D J when t D 0, we conclude that ATJA D

J for every t 2 R.

Perhaps even more surprising is the fact that Poincaré’s theorem holds in the con-
verse direction:

Theorem 5.3. Let 't WR2 ! R2 be the flow of some ODE and assume that for each t 2
R, the map 't .x/ is symplectic. Then for every point x0 2 R2 there is a neighborhood
U of x0 and a function QH.x/ such that for x 2 U , 't .x/ is the flow of the ODE with
Hamiltonian QH .

Thus, in a certain sense, the flow map ' is symplectic if and only if the correspond-
ing ODE is Hamiltonian. The proof of the above theorem is outside the scope of these
notes.

(a) The pendulum

(b) Phase portrait

Figure 5.2: The pendulum in Ex-
ample 5.4.

Example 5.4. Consider a pendulum of length L > 0 hanging from a frictionless joint.
We can describe its position by the angle � that the pendulum makes with the downward
vertical, see Figure 5.2(a). Using Newton’s second law, one can show that the angle
behaves according to the ODE

L R� D �g sin �;

where g > 0 is the gravitational constant. Letting p D L P� , we can write the above
ODE as a Hamiltonian system with unknown .p; �/ and Hamiltonian functionH.p; �/ D
1
2L
p2 � g cos.�/. A phase portrait of this Hamiltonian system can be seen in Figure

5.2(b). Figure 5.3 shows the evolution of the flow over time, along with a superimposed
image where each pixel follows the flow. Although the image is severely distorted over
time, its area (and the area of any section of the image) is preserved. 4

5.2 Symplectic numerical methods
Let us consider some numerical method for the Hamiltonian system (5.1), and assume
that we are able to write down the method explicitly,

ynC1 D ˆh.yn/ (5.4)

where ˆhWR2 ! R2 is a “discrete flow”—a function which returns the numerical
approximation at time t D h. We say that a numerical method is symplectic (also called
a symplectic integrator) if it can be written as (5.4) for some function ˆh which is
symplectic for all (sufficiently small) step sizes h. For instance, the exact flowˆh D 'h
is a symplectic integrator. As we saw in the previous section, a flow ˆh is symplectic
if and only if its corresponding flow is Hamiltonian. The Hamiltonian function for ˆh,
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Figure 5.3: The author is transported with the flow 't , but his area is preserved over
time. The black curves are orbits of the flow.

which we denote by QH , is not necessarily the same as H , but it is usually very close.
Thus, the energy of the computed solution is

H.yn/ � QH.yn/ D QH.yn�1/ D � � � D QH.y0/ � H.y0/;

and therefore we can expect a symplectic method to almost preserve the energyH.yn/
over time.

Proposition 5.5. The symplectic Euler method(
pnC1 D pn � h

@H
@q
.pnC1; qn/

qnC1 D qn C h
@H
@p
.pnC1; qn/

(5.5)

is a first-order accurate symplectic method.

Proof. Let us for the sake of simplicity assume thatH is separable, meaning that it can
be written as

H.p; q/ D T .p/C V.q/; (5.6)

where we can interpret V.q/ as the potential energy and T .p/ as the kinetic energy of
the solution. Then the symplectic Euler method is in fact explicit:(

pnC1 D pn � hV
0.qn/

qnC1 D qn C hT
0.pnC1/ D qn C hT

0
�
pn � hV

0.qn/
�
:
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Letting ˆh.pn; qn/ denote the right-hand side, we can compute

A WD rˆh.pn; qn/ D

�
1 �hV 00

hT 00 1 � h2T 00V 00

�
where V 00 D V 00.qn/ and T 00 D T 00

�
pn � hV

0.qn/
�
. It is now straightforward to check

that A satisfies (5.2), regardless of pn and qn.

Proposition 5.6. The Størmer–Verlet method Named after Carl Størmer
(1874–1957) and Loup Verlet
(1931–), often incorrectly
spelled Störmer–Verlet. A
professor in mathematics at the
University of Oslo, Størmer
did groundbreaking work in
the modeling of aurora borealis
using differential equations.
Størmer is also known for
his photographs of people in
Karl Johans gate, Oslo using a
camera hidden under his jacket,
in particular his photograph of
Henrik Ibsen.

8̂̂<̂
:̂
pnC1=2 D pn �

h
2
@H
@q

�
pnC1=2; qn

�
qnC1 D qn C

h
2

�
@H
@p

�
pnC1=2; qn

�
C

@H
@p

�
pnC1=2; qnC1

��
pnC1 D pnC1=2 �

h
2
@H
@q

�
pnC1=2; qnC1

� (5.7)

is a second-order accurate symplectic method.

Proof. Let us again for the sake of simplicity assume that the Hamiltonian can be
written in the separable form (5.6). Then the Størmer–Verlet method is also explicit:8̂<̂

:
pnC1=2 D pn �

h
2
V 0.qn/

qnC1 D qn C hT
0.pnC1=2/

pnC1 D pnC1=2 �
h
2
V 0.qnC1/:

Writing the method in the form (5.4), we get

A WD rˆh.pn; qn/ D

 
1 �

h
2
V 00

hT 00 1 � h2

2
T 00V 00

!
where V 00 D V 00.qn/ and T 00 D T 00

�
pn �

h
2
V 0.qn/

�
. Again, it is an easy exercise to

check that A satisfies (5.2).

Example 5.7. We repeat the example with the harmonic oscillator, Example 5.1. As
shown in Figure 5.4, the first-order accurate symplectic Euler method and the second-
order accurate Størmer–Verlet method both compute the solution quite accurately up to
time T D 500, with only a small error in the phase of the oscillations. The total energy
of the solution, shown in Figure 5.5, oscillates around the correct value H � 0:5 and,
most importantly, the error in the does not increase over time. 4
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Figure 5.4: The p component in the harmonic oscillator (2.3). Note the values along
the t -axis.
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Figure 5.5: The total energy H.p; q/ for the harmonic oscillator (2.3). Note the values
along the t -axis.
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