UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in: MAT2440 - Differential equations and
Day of examination: Thursday 14 June 2018
Examination hours: 9:00-13:00
This problem set consists of 3 pages.
Appendices: None
Permitted aids: Approved calculator

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1 Linear systems (weight 15\%)
Consider the linear system

$$
\left\{\begin{array}{l}
\dot{x}=A x \tag{1}\\
x(0)=x_{0} .
\end{array}\right.
$$

For each of the following 2×2 matrices A, classify the equilibrium $x^{*}=\binom{0}{0}$ of (1) and draw a phase portrait.
a

$$
A=\left(\begin{array}{rr}
-1 & 1 \\
2 & 0
\end{array}\right)
$$

b

$$
A=\left(\begin{array}{rr}
2 & 1 \\
-1 & 2
\end{array}\right)
$$

c

$$
A=\left(\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right)
$$

Problem 2 Existence and uniqueness (weight 15\%)

a
Find a solution of the scalar ODE

$$
\left\{\begin{array}{l}
\dot{x}=-x^{2} \tag{2}\\
x(0)=x_{0} .
\end{array}\right.
$$

(Continued on page 2.)

Determine the maximal interval of existence of (2) for any $x_{0}>0$ - that is, the largest interval $(a, b) \subset \mathbb{R}$ so that a solution $x(t)$ of (2) exists for all $t \in(a, b)$.

b

Consider the scalar ODE

$$
\left\{\begin{array}{l}
\dot{x}(t)=\sin (x+t) \tag{3}\\
x(0)=x_{0} .
\end{array}\right.
$$

Are there more than one solution of (3)? Justify your answer, for example by applying one of the theorems from the course.

Problem 3 Optimal control (weight 30\%)

Consider the optimal control problem

$$
\left\{\begin{array}{ll}
\max \int_{0}^{1}\left(x+\frac{1}{2} u\right) e^{t} d t, & \dot{x}=x-u, \tag{4}\\
x(0)=1, & x(1) \text { is free },
\end{array} u(t) \in[0,1] \text { for all } t \in[0,1] .\right.
$$

a

Find the adjoint $p(t)$ of the problem.

b

Use the maximum principle to show that

$$
u^{*}(t)= \begin{cases}0 & \text { if } t<t^{*} \\ 1 & \text { if } t \geqslant t^{*}\end{cases}
$$

for some $t^{*} \in(0,1)$. Find t^{*}.

c

Find x^{*}.
d

Show that the candidate $\left(x^{*}, u^{*}\right)$ is indeed optimal for the problem (4).

Problem 4 Lotka-Volterra (weight 20\%)

Consider the Lotka-Volterra model

$$
\left\{\begin{array}{l}
\dot{n}=n(2-n-2 m) \tag{5}\\
\dot{m}=m(n-1)
\end{array}\right.
$$

a

Which of the two unknowns represent the predator, and which the prey? Justify your answer.
(Continued on page 3.)

b

The model (5) has an equilibrium at $\left(n_{0}^{*}, m_{0}^{*}\right)=\left(1, \frac{1}{2}\right)$. Find all the other equilibria.

C

Linearize (5) around the equilibrium $\left(n_{0}^{*}, m_{0}^{*}\right)$. Use the linearized system to draw a phase portrait of the nonlinear system (5) around (n_{0}^{*}, m_{0}^{*}). Justify why the linearized system gives a good description of the behavior of (5) close to $\left(n_{0}^{*}, m_{0}^{*}\right)$.

Problem 5 (weight 10\%)
Consider the ODE

$$
\left\{\begin{array}{l}
\dot{u}=-v^{3} \tag{6}\\
\dot{v}=u^{3}
\end{array}\right.
$$

Find an expression for the orbits of (6) and draw a phase portrait.
Hint: The system (6) is Hamiltonian.

Problem 6 (weight 10\%)

Show that the function $L(u, v)=u^{2}+v^{2}$ is a Lyapunov function for the system

$$
\left\{\begin{array}{l}
\dot{u}=-v-u v^{2}-u^{3} \tag{7}\\
\dot{v}=u-v^{3}
\end{array}\right.
$$

Use this to describe the long-time behavior of the solution (that is, explain what will happen to $x(t)=(u(t), v(t))$ when $t \rightarrow \infty)$. Justify your answer.

THE END

