Problem 1 Linear systems

a
The matrix $A=\left(\begin{array}{rr}-1 & 1 \\ 2 & 0\end{array}\right)$ is diagonalizable with eigenvector matrix $R=\left(\begin{array}{rr}1 & 1 \\ -1 & 2\end{array}\right)$ and eigenvalues $\lambda_{1}=-2$ and $\lambda_{2}=1$. Hence, the equilibrium x^{*} is a saddle node.

b

The matrix $A=\left(\begin{array}{rr}2 & 1 \\ -1 & 2\end{array}\right)$ is diagonalizable with eigenvector matrix $R=\left(\begin{array}{rr}1 & 1 \\ i & -i\end{array}\right)$ and eigenvalues $\lambda_{1}=2+i$ and $\lambda_{2}=2-i$. Hence, the equilibrium x^{*} is an unstable focus or source focus.

c

The matrix $A=\left(\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right)$ is diagonalizable with eigenvector matrix $R=\left(\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right)$ and eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=3$. Hence, the equilibrium x^{*} is an unstable node or source node.

Figure 1: Phase portraits in Problem 1.

Problem 2 Existence and uniqueness

a

If $x_{0}=0$ then $x(t) \equiv 0$ is a solution. If $x_{0} \neq 0$ then $x(t) \neq 0$, at least for small t, so we can divide by x^{2} on both sides:

$$
\frac{\dot{x}}{x^{2}}=-1
$$

Integrate with respect to t on both sides:

$$
-t=\int_{0}^{t} \frac{\dot{x}(s)}{x(s)^{2}} d s=\int_{x_{0}}^{x(t)} \frac{1}{y^{2}} d y=\frac{1}{x_{0}}-\frac{1}{x(t)}
$$

Solving for $x(t)$ yields

$$
x(t)=\frac{1}{\frac{1}{x_{0}}+t}=\frac{x_{0}}{1+x_{0} t}
$$

If $x_{0}>0$ then this solution is well-defined for all $t \in\left(-\frac{1}{x_{0}}, \infty\right)$, but goes to infinity when $t \rightarrow-\frac{1}{x_{0}}$. This interval is therefore the maximal interval of existence.

b

The function $f(x, t)=\sin (x+t)$ is Lipschitz continuous in the x-variable (since $\left|\frac{d}{d x} f(x, t)\right|=$ $|\cos (x+t)| \leqslant 1)$. The uniqueness theorem therefore guarantees that there exists no more than one solution of the ODE.

Problem 3 Optimal control

a
The Hamiltonian for our problem is

$$
H(t, x, u, p)=e^{t}(x+u / 2)+p(x-u) .
$$

Hence, the adjoint p satisfies

$$
\dot{p}=-\frac{\partial H}{\partial x}=-e^{t}-p
$$

and $p(1)=0$. This ODE has solution

$$
p(t)=\frac{e^{-t}}{2}\left(e^{2}-e^{2 t}\right)
$$

b
u^{*} must satisfy

$$
\begin{aligned}
u^{*}(t) & =\operatorname{argmax}_{u \in[0,1]}\left(\left(x+\frac{1}{2} u\right) e^{t}+(x-u) \frac{e^{-t}}{2}\left(e^{2}-e^{2 t}\right)\right) \\
& =\operatorname{argmax}_{u \in[0,1]}\left(\frac{1}{2} u e^{t}-u \frac{e^{-t}}{2}\left(e^{2}-e^{2 t}\right)\right) \\
& =\operatorname{argmax}_{u \in[0,1]} \frac{1}{2} u e^{t}\left(2-e^{2-2 t}\right) .
\end{aligned}
$$

Thus, if $2-e^{2-2 t} \geqslant 0$, i.e. $t \geqslant t^{*}=1-\frac{\ln 2}{2}$, then $u(t)=1$, and otherwise $u(t)=0$.

c

x satisfies

$$
\dot{x}=\left\{\begin{array}{ll}
x & \text { if } t<t^{*} \\
x-1 & \text { if } t \geqslant t^{*},
\end{array} \quad x(0)=1\right.
$$

whose solution is

$$
x(t)= \begin{cases}e^{t} & \text { if } t<t^{*} \\ 1-e^{t-t^{*}}+e^{t} & \text { if } t \geqslant t^{*}\end{cases}
$$

d
The Hamiltonian H is linear in (x, u) for every t, p, so in particular it is concave with respect to (x, u). It follows from Mangasarian's Theorem that $\left(x^{*}, u^{*}\right)$ is optimal.

Problem 4 Lotka-Volterra

a

The population m reproduces with the rate $n-1$, so the more n-animals, the faster the increase in m. The population n reproduces with rate $2-n-2 m$, so the more m-animals, the slower the increase in n. We conclude that n is the number of individuals in the prey population, and m in the predator population.

b

$\dot{m}=0$ requires either $m=0$ or $n=1$, and $\dot{n}=0$ requires either $n=0$ or $n=2-2 m$. This yields the two additional equilibria $\left(n_{1}^{*}, m_{1}^{*}\right)=(0,0)$ and $\left(n_{2}^{*}, m_{2}^{*}\right)=(2,0)$.

C
Write $x=\binom{n}{m}$ and $f(x)=\binom{n(2-n-2 m)}{m(n-1)}$. The Jacobian of f is

$$
D f(x)=\left(\begin{array}{cc}
2-2 n-2 m & -2 n \\
m & n-1
\end{array}\right)
$$

Hence,

$$
A:=D f\left(x_{0}^{*}\right)=\left(\begin{array}{rr}
-1 & -2 \\
\frac{1}{2} & 0
\end{array}\right)
$$

and the linearized system is

$$
\dot{y}=A y, \quad y(0)=x_{0}-x_{0}^{*}
$$

The eigenvalues of A are $\lambda_{ \pm}=\frac{-1 \pm \sqrt{3} i}{2}$, which are complex with $\operatorname{Re}\left(\lambda_{ \pm}\right)=-\frac{1}{2}<0$. It follows that x_{0}^{*} is a stable focus. To see which direction the flow rotates we can insert, say, $y=\binom{0}{1}$ into the linearized system, which gives $\dot{y}=\binom{-2}{0}$ at that specific point. The flow must therefore rotate counter-clockwise.

Figure 2: Phase portrait for the linearized system in Problem 4c.

None of the eigenvalues $\lambda_{ \pm}$has zero real part, so x_{0}^{*} is a hyperbolic equilibrium. The Hartman-Grobman theorem then implies that the flow is topologically conjugate to its linearization around x_{0}^{*}. We can therefore expect the linearized system to give a good description of the behavior of the ODE close to x_{0}^{*}.

Problem 5

The system is Hamiltonian with Hamiltonian function $H(u, v)=\frac{u^{4}+v^{4}}{4}$. The solutions of a Hamiltonian system move along the level curves of its Hamiltonian function, so every orbit lie on a curve of the form $\frac{u^{4}+v^{4}}{4}=c$ for some constant $c \geqslant 0$. We also note that the system only has one equilibrium, namely $\left(u^{*}, v^{*}\right)=(0,0)$ (corresponding to $c=0$), so the solutions never stop anywhere along the curves $\frac{u^{4}+v^{4}}{4}=c$ (when $c>0$). We conclude that the orbits of the system are precisely the curves

$$
\frac{u^{4}+v^{4}}{4}=c, \quad c \geqslant 0 .
$$

Inspecting the vector field anywhere along these curves shows that the solutions move counterclockwise around the origin.

Figure 3: Phase portrait in Problem 5.

Problem 6

Let $(u(t), v(t))$ be any solution of the system and differentiate $L(u, v)$:

$$
\frac{d}{d t} L(u, v)=2 u\left(-v-u v^{2}-u^{3}\right)+2 v\left(u-v^{3}\right)=-2\left(u^{4}+u^{2} v^{2}+v^{4}\right) \leqslant 0
$$

and is only equal to 0 at the equilibrium $\left(u^{*}, v^{*}\right)=(0,0)$. It follows that L is a Lyapunov function for the equilibrium $\left(u^{*}, v^{*}\right)$ in the whole of \mathbb{R}^{2}. Hence, $\left(u^{*}, v^{*}\right)$ attracts all points in \mathbb{R}^{2}, so any solution $(u(t), v(t))$ will converge to $(0,0)$ as $t \rightarrow \infty$.

