
Problem 1 Linear systems

a

The matrix A =

(
−1 1
2 0

)
is diagonalizable with eigenvector matrix R =

(
1 1
−1 2

)
and eigen-

values λ1 = −2 and λ2 = 1. Hence, the equilibrium x∗ is a saddle node.

b

The matrix A =

(
2 1
−1 2

)
is diagonalizable with eigenvector matrix R =

(
1 1
i −i

)
and eigen-

values λ1 = 2 + i and λ2 = 2 − i. Hence, the equilibrium x∗ is an unstable focus or source
focus.

c

The matrix A =

(
2 −1
−1 2

)
is diagonalizable with eigenvector matrix R =

(
1 −1
1 1

)
and eigen-

values λ1 = 1 and λ2 = 3. Hence, the equilibrium x∗ is an unstable node or source node.

(a) (b) (c)

Figure 1: Phase portraits in Problem 1.

Problem 2 Existence and uniqueness

a

If x0 = 0 then x(t) ≡ 0 is a solution. If x0 6= 0 then x(t) 6= 0, at least for small t, so we can
divide by x2 on both sides:

ẋ

x2
= −1.

Integrate with respect to t on both sides:

−t =
∫ t

0

ẋ(s)

x(s)2
ds =

∫ x(t)

x0

1

y2
dy =

1

x0
− 1

x(t)
.

Solving for x(t) yields

x(t) =
1

1
x0

+ t
=

x0
1 + x0t

.
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If x0 > 0 then this solution is well-defined for all t ∈ (− 1
x0
,∞), but goes to infinity when t→ − 1

x0
.

This interval is therefore the maximal interval of existence.

b

The function f(x, t) = sin(x + t) is Lipschitz continuous in the x-variable (since | ddxf(x, t)| =
| cos(x + t)| 6 1). The uniqueness theorem therefore guarantees that there exists no more than
one solution of the ODE.

Problem 3 Optimal control

a

The Hamiltonian for our problem is

H(t, x, u, p) = et(x+ u/2) + p(x− u).

Hence, the adjoint p satisfies

ṗ = −∂H
∂x

= −et − p

and p(1) = 0. This ODE has solution

p(t) =
e−t

2

(
e2 − e2t

)
.

b

u∗ must satisfy

u∗(t) = argmaxu∈[0,1]

(
(x+ 1

2u)e
t + (x− u)e

−t

2

(
e2 − e2t

))
= argmaxu∈[0,1]

(
1
2ue

t − ue
−t

2

(
e2 − e2t

))
= argmaxu∈[0,1]

1

2
uet
(
2− e2−2t

)
.

Thus, if 2− e2−2t > 0, i.e. t > t∗ = 1− ln 2
2 , then u(t) = 1, and otherwise u(t) = 0.

c

x satisfies

ẋ =

{
x if t < t∗

x− 1 if t > t∗,
x(0) = 1,

whose solution is

x(t) =

{
et if t < t∗

1− et−t∗ + et if t > t∗.

d

The Hamiltonian H is linear in (x, u) for every t, p, so in particular it is concave with respect to
(x, u). It follows from Mangasarian’s Theorem that (x∗, u∗) is optimal.
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Problem 4 Lotka–Volterra

a

The population m reproduces with the rate n− 1, so the more n-animals, the faster the increase
in m. The population n reproduces with rate 2−n− 2m, so the more m-animals, the slower the
increase in n. We conclude that n is the number of individuals in the prey population,
and m in the predator population.

b

ṁ = 0 requires either m = 0 or n = 1, and ṅ = 0 requires either n = 0 or n = 2 − 2m. This
yields the two additional equilibria (n∗1,m

∗
1) = (0, 0) and (n∗2,m

∗
2) = (2, 0).

c

Write x =

(
n
m

)
and f(x) =

(
n(2− n− 2m)
m(n− 1)

)
. The Jacobian of f is

Df(x) =

(
2− 2n− 2m −2n

m n− 1

)
.

Hence,

A := Df(x∗0) =

(
−1 −2

1
2 0

)
,

and the linearized system is
ẏ = Ay, y(0) = x0 − x∗0.

The eigenvalues of A are λ± = −1±
√
3i

2 , which are complex with Re(λ±) = −1
2 < 0. It follows

that x∗0 is a stable focus. To see which direction the flow rotates we can insert, say, y =

(
0
1

)
into the linearized system, which gives ẏ =

(
−2
0

)
at that specific point. The flow must therefore

rotate counter-clockwise.

Figure 2: Phase portrait for the linearized system in Problem 4c.

None of the eigenvalues λ± has zero real part, so x∗0 is a hyperbolic equilibrium. The
Hartman–Grobman theorem then implies that the flow is topologically conjugate to its lin-
earization around x∗0. We can therefore expect the linearized system to give a good description
of the behavior of the ODE close to x∗0.
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Problem 5

The system is Hamiltonian with Hamiltonian function H(u, v) = u4+v4

4 . The solutions of a
Hamiltonian system move along the level curves of its Hamiltonian function, so every orbit lie
on a curve of the form u4+v4

4 = c for some constant c > 0. We also note that the system only has
one equilibrium, namely (u∗, v∗) = (0, 0) (corresponding to c = 0), so the solutions never stop
anywhere along the curves u4+v4

4 = c (when c > 0). We conclude that the orbits of the system
are precisely the curves

u4 + v4

4
= c, c > 0.

Inspecting the vector field anywhere along these curves shows that the solutions move counter-
clockwise around the origin.

Figure 3: Phase portrait in Problem 5.

Problem 6

Let (u(t), v(t)) be any solution of the system and differentiate L(u, v):

d

dt
L(u, v) = 2u(−v − uv2 − u3) + 2v(u− v3) = −2(u4 + u2v2 + v4) 6 0,

and is only equal to 0 at the equilibrium (u∗, v∗) = (0, 0). It follows that L is a Lyapunov
function for the equilibrium (u∗, v∗) in the whole of R2. Hence, (u∗, v∗) attracts all points in R2,
so any solution (u(t), v(t)) will converge to (0, 0) as t→∞.
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