Problem 1 Linear systems

a

. -1 1\ . .. . . . . 11 .
The matrix A = 9 o) diagonalizable with eigenvector matrix R = 1 9 and eigen-
values A1 = —2 and Ao = 1. Hence, the equilibrium z* is a saddle node.
b

. 2 1\ . .. . . . . 1 1 .
The matrix A = (_1 2) is diagonalizable with eigenvector matrix R = ; —i) and eigen-

values Ay = 2+ i and Ao = 2 —i. Hence, the equilibrium x* is an unstable focus or source
focus.
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2 _;) is diagonalizable with eigenvector matrix R = ( 1 _1) and eigen-

-1
values A1 = 1 and A9 = 3. Hence, the equilibrium z* is an unstable node or source node.

The matrix A = (

(b)

Figure 1: Phase portraits in Problem 1.

Problem 2 Existence and uniqueness

a

If 9 = 0 then z(t) = 0 is a solution. If xy # 0 then x(t) # 0, at least for small ¢, so we can
divide by 2% on both sides:

LAY
.’L’2

Integrate with respect to t on both sides:
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Solving for z(t) yields




If z¢p > 0 then this solution is well-defined for all ¢ € (—%, o0), but goes to infinity when ¢ — —-1-.

o
This interval is therefore the maximal interval of existence.

b

The function f(x,t) = sin(x + t) is Lipschitz continuous in the x-variable (since |%f(:n,t)| =
|cos(x 4+ t)| < 1). The uniqueness theorem therefore guarantees that there exists no more than
one solution of the ODE.

Problem 3 Optimal control

a

The Hamiltonian for our problem is
H(t,:r,u,p) = et(x + U/Q) +p($ - U)

Hence, the adjoint p satisfies

b

u* must satisfy

/N

u*(t) = argmax, o 1] (x+ u)e + (a: — u)%(e2 — ezt)>
= argmax,cfo 1] <% el — u— e —¢? >

1
= argmax,c[o,1 §uet (2 — 62_2t>.

Thus, if 2 — €272 > 0, i.e. t > t* = 1 — 32 then u(t) = 1, and otherwise u(t) = 0.
C
x satisfies
if ¢+ < t*
T = v 1 (0) =1,
z—1 ift

whose solution is

¢ if t < t*
x(t)z{e » ?

1—el™t et ift>tr.

d

The Hamiltonian H is linear in (x,u) for every ¢, p, so in particular it is concave with respect to
(z,u). It follows from Mangasarian’s Theorem that (z*,u*) is optimal.



Problem 4 Lotka—Volterra

a

The population m reproduces with the rate n — 1, so the more n-animals, the faster the increase
in m. The population n reproduces with rate 2 —n — 2m, so the more m-animals, the slower the
increase in n. We conclude that n is the number of individuals in the prey population,
and m in the predator population.

b

m = 0 requires either m = 0 or n = 1, and n = 0 requires either n = 0 or n = 2 — 2m. This
yields the two additional equilibria (n},m}) = (0,0) and (n},m}) = (2,0).

C

Write z = (;:L) and f(x) = (n(%m—(g_—f)m)) . The Jacobian of f is

m n—1
-2
0 b

y = Ay, y(0) = o — x;.
—14+v/3i
2

Df(z) = (2—2n—2m —2n).

Hence,

A= D) =

N =

and the linearized system is

The eigenvalues of A are Ay = , which are complex with Re(A+) = —3 < 0. It follows

that x{ is a stable focus. To see which direction the flow rotates we can insert, say, y = (1)

. . . . . . -2 . .
into the linearized system, which gives § = < ) at that specific point. The flow must therefore

0

rotate counter-clockwise.

Figure 2: Phase portrait for the linearized system in Problem 4c.

None of the eigenvalues A4 has zero real part, so zj is a hyperbolic equilibrium. The
Hartman—Grobman theorem then implies that the flow is topologically conjugate to its lin-
earization around z§. We can therefore expect the linearized system to give a good description
of the behavior of the ODE close to xj.



Problem 5

The system is Hamiltonian with Hamiltonian function H(u,v) = #. The solutions of a
Hamiltonian system move along the level curves of its Hamiltonian function, so every orbit lie
on a curve of the form “41'”4 = ¢ for some constant ¢ > 0. We also note that the system only has
one equilibrium, namely (u*,v*) = (0,0) (corresponding to ¢ = 0), so the solutions never stop

anywhere along the curves # = ¢ (when ¢ > 0). We conclude that the orbits of the system

are precisely the curves
ut + vt
4
Inspecting the vector field anywhere along these curves shows that the solutions move counter-
clockwise around the origin.

=c, cz=0.

Figure 3: Phase portrait in Problem 5.

Problem 6

Let (u(t),v(t)) be any solution of the system and differentiate L(u,v):

d

EL(U, v) = 2u(—v — uwv?® — u?) + 2v(u — v3) = =2(ut + u?0? +0v?) <0,

and is only equal to 0 at the equilibrium (u*,v*) = (0,0). It follows that L is a Lyapunov
function for the equilibrium (u*,v*) in the whole of R2. Hence, (u*,v*) attracts all points in R?,
so any solution (u(t),v(t)) will converge to (0,0) as t — oo.



