Problem 1 Linear systems

a

. -1 1\ . .. . . . . 11 .
The matrix A = 9 o) diagonalizable with eigenvector matrix R = 1 9 and eigen-
values A1 = —2 and Ao = 1. Hence, the equilibrium z* is a saddle node.
b

. 2 1\ . .. . . . . 1 1 .
The matrix A = (_1 2) is diagonalizable with eigenvector matrix R = ; —i) and eigen-

values Ay = 2+ i and Ao = 2 —i. Hence, the equilibrium x* is an unstable focus or source
focus.
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2 _;) is diagonalizable with eigenvector matrix R = ( 1 _1) and eigen-

-1
values A1 = 1 and A9 = 3. Hence, the equilibrium z* is an unstable node or source node.

The matrix A = (

(b)

Figure 1: Phase portraits in Problem 1.

Problem 2 Existence and uniqueness

a

If 9 = 0 then z(t) = 0 is a solution. If xy # 0 then x(t) # 0, at least for small ¢, so we can
divide by 2% on both sides:
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Integrate with respect to t on both sides:
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Solving for z(t) yields




If z¢p > 0 then this solution is well-defined for all ¢ € (—%, o0), but goes to infinity when ¢ — —-1-.

o
This interval is therefore the maximal interval of existence.

b

The function f(x,t) = sin(x + t) is Lipschitz continuous in the x-variable (since |%f($,t)\ =
|cos(x 4 t)| < 1). The uniqueness theorem therefore guarantees that there exists no more than
one solution of the ODE.

Problem 3 Numerical methods

a Explicit and implicit Euler

The explicit Euler method is
Ynt1l = Yn — hy2, n=0,1,....

Inserting the prescribed parameters gives

_ 2 =222 0.967.
=g 8 64 512

9 1_19 9 55 495
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The implicit Euler method is
Yn+1 = Yn — hng-l-

Solving the above for y,11 gives the two solutions

-1+ 1+ 4hy,
Ynt1= 2 ‘

Assume that y, > 0 (which is the case here). If the solution of the ODE is positive at some time
then it stays positive for all times; if we choose the “—" solution above then y,4+1 < 0, which
would not reflect the behavior of the exact solution. We therefore choose the “+” solution and

get
—1+«/ 33
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b  Stability of explicit and implicit Euler

The explicit Euler method is linearly stable as long as |1 + h\g| < 1 for k: = 1,2. Since the
eigenvalues are real and negative, this is the same as h < — /\Qk for k = 1,2. Inserting the
prescribed eigenvalues gives the requirement

1

h< —
50

to ensure linear stability. The step size h = % does not satisfy this requirement, and we can
expect large oscillations. The step size h = 1(1)—0 does satisfy this, and we can expect a reasonable
solution.

The implicit Euler method is A-stable (or unconditionally stable) and hence gives a reason-
able, non-oscillatory solution for any step size h > 0.



¢  Truncation error
Denote the exact solution by z,, = z(t,) and the truncation error by 7,41 = Zn+1 — 2n+1, Where

Tn + Zn+1 )

zn+1:xn+hf( 5

From the hint we know that there is a constant C > 0 such that

Tpn + Tntl

/tt+ Fa(s)) ds — hf(2>‘ < W,

Using this inequality and the identity

tni1
In+1l = Tn +/t f($(8)) ds

we get

|Tnt1] = 9

Ty + /;n+1 f(z(s))ds — xy — hf<M>

(adding and subtracting hf(%))

/t:nH f(x(s))ds — hf(w) + hf(m) - hf(m) ’

2 2 2

(triangle inequality)

/t:n“ f(z(s))ds — hf(w)‘ + ’hf(wmnﬂ) - hf(lm)‘

<
2 2 2

(by the above estimate and the Lipschitz continuity of f)
3 1
< Ch + §hK|.1‘n+1 — Zn+1|
1
=Ch3 + 3P T

Solving for |7,+1| gives

C

<—— R
Tl S 7957

If the time step h is small enough then the coeflicient % is bounded from above. We

conclude that the truncation error behaves like h3.

Problem 4 Lotka—Volterra

a

The population m reproduces with the rate n — 1, so the more n-animals, the faster the increase
in m. The population n reproduces with rate 2 —n — 2m, so the more m-animals, the slower the
increase in n. We conclude that n is the number of individuals in the prey population,
and m in the predator population.



b
m = 0 requires either m = 0 or n = 1, and n = 0 requires either n = 0 or n = 2 — 2m. This

yields the two additional equilibria (n},m}) = (0,0) and (n},m}) = (2,0).

C

Write z = (;:L) and f(x) = (n(2 e 2m)> . The Jacobian of f is

m(n —1)

Df(z) = (2—2n—2m —2n).

m n—1
Hence,
-1 -2
A=psa)= () 7).
2

and the linearized system is

y=A4y,  y(0) =z — p.

The eigenvalues of A are Ay = %\/‘3”', which are complex with Re(Ay) = —% < 0. It follows

that x{ is a stable focus. To see which direction the flow rotates we can insert, say, y = (1)

. . . . . . -2 . .
into the linearized system, which gives § = < ) at that specific point. The flow must therefore

0

rotate counter-clockwise.

Figure 2: Phase portrait for the linearized system in Problem 4c.

None of the eigenvalues A4 has zero real part, so zj is a hyperbolic equilibrium. The
Hartman—Grobman theorem then implies that the flow is topologically conjugate to its lin-
earization around z§. We can therefore expect the linearized system to give a good description
of the behavior of the ODE close to zj.

Problem 5

The system is Hamiltonian with Hamiltonian function H(u,v) = “41'”4. The solutions of a
Hamiltonian system move iﬂong the level curves of its Hamiltonian function, so every orbit lie
on a curve of the form 1’” = ¢ for some constant ¢ > 0. We also note that the system only has
one equilibrium, namely (u*,v*) = (0,0) (corresponding to ¢ = 0), so the solutions never stop




anywhere along the curves # = ¢ (when ¢ > 0). We conclude that the orbits of the system
are precisely the curves
ut + vt
4
Inspecting the vector field anywhere along these curves shows that the solutions move counter-
clockwise around the origin.

=c, c>0.

Figure 3: Phase portrait in Problem 5.

Problem 6

Let (u(t),v(t)) be any solution of the system and differentiate L(u,v):

d

EL(U, v) = 2u(—v — uwv?® — u?) + 2v(u — v3) = =2(ut + v?0? +0v?) <0,

and is only equal to 0 at the equilibrium (u*,v*) = (0,0). It follows that L is a Lyapunov
function for the equilibrium (u*,v*) in the whole of R2. Hence, (u*,v*) attracts all points in R?,
so any solution (u(t),v(t)) will converge to (0,0) as t — oo.



