UNIVERSITY OF OSLO Faculty of mathematics and natural sciences

Exam in: MAT3440 - Dynamical systems
Day of examination: Friday, June 12th, 2020
Examination hours: 09.00, June 12-09.00, June 19
This problem set consists of 5 pages.
Appendices: None
Permitted aids: All aids are allowed.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

a

Solve the differential equation

$$
\begin{equation*}
x^{\prime}=-\frac{1}{1+t} x+2, \quad x(0)=1, \tag{1}
\end{equation*}
$$

by assuming that the solution is of the form

$$
x(t)=h(t) i(t),
$$

where h solves the homogenous problem and $i(t)$ must be determined.

b

Solve the nonlinear differential equation

$$
x^{\prime}=e^{x}, \quad x(0)=x_{0} .
$$

What is the maximal time interval $(-\infty, T)$ on which the solution exists? Denote by $\phi_{t}\left(x_{0}\right)$ the flow. Verify that $\phi_{t+s}\left(x_{0}\right)=\phi_{s}\left(\phi_{t}\left(x_{0}\right)\right)$.

c

Use the "intermediate value theorem" to prove that there exists an equilibrium solution x^{\star} to the differential equation

$$
x^{\prime}=f(x)=x-\cos (x) .
$$

Classify the stability of x^{\star} —unstable (source) or stable (sink). Plot (on a computer) slope fields and phase lines.

d

Consider the nonlinear differential equation

$$
x^{\prime}=f_{r}(x):=r-x^{2},
$$

which depends on a parameter $r \in \mathbb{R}$. Determine the equilibrium solutions and classify their stability (unstable / stable). Plot (on a computer) slope fields, phase lines, and a bifurcation diagram.

e

Consider the nonlinear differential equation

$$
x^{\prime}=f_{r}(x):=-x+r \tanh (x)
$$

which depends on a parameter $r \in \mathbb{R}$. Discuss the equilibrium solutions and their stability. Make relevant plots on a computer, including slope fields, phase lines, and a bifurcation diagram.

f

Consider the nonlinear differential equation

$$
x^{\prime}=f_{r}(x):=r x-x^{3},
$$

depending on a parameter $r \in \mathbb{R}$. Write the equation in gradient form,

$$
x^{\prime}=-\frac{d}{d x} V_{r}(x)
$$

for some function $V_{r}: \mathbb{R} \rightarrow \mathbb{R}$. Plot $V_{r}(x)$ for different values of r, and determine the local extrema (minima / maxima) of V_{r}. Prove that V_{r} decreases along solutions $x(t)$. What is the correspondence between local extrema of V_{r} and equilibrium solutions of the differential equation (recall the equilibrium solutions and their stability)?

g

Consider the nonlinear differential equation

$$
x^{\prime}=f(x):=-x^{3} .
$$

Why does the linearization method fail to determine the stability of the equilibrium solution 0 . Use Liapunov's stability theorem to prove that the origin is stable

Problem 2

a

Show that the approximations defined by Picard iterations converge to the solution $X(t)=\exp (t A) X_{0}$ of the linear system

$$
X^{\prime}=F(X)=A X, \quad X(0)=X_{0}, \quad X_{0} \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}
$$

(Continued on page 3.)

b

Use trace-determinant analysis to determine if the linear system $x^{\prime}=A x$ has a saddle, (spiral) sink, (spiral) source or center at the origin:
(i) $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$,
(ii) $A=\left(\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right)$,
(iii) $A=\left(\begin{array}{ll}0 & -1 \\ 2 & -3\end{array}\right)$,
and

$$
\text { (iv) } A=\left(\begin{array}{cc}
r & -1 \\
1 & r
\end{array}\right), \quad r \in \mathbb{R} .
$$

c
Use the matrix exponential to solve the initial-value problem

$$
x^{\prime}=-2 x+y, \quad y^{\prime}=-2 y, \quad x(0)=x_{0}, y(0)=y_{0} .
$$

Sketch the phase portrait.

d

Use the matrix exponential to solve the initial-value problem

$$
x^{\prime}=-2 x-y, \quad y^{\prime}=x-2 y, \quad x(0)=x_{0}, y(0)=y_{0} .
$$

Sketch the phase portrait.

e

Solve the initial-value problem

$$
x^{\prime}=-2 x-y+\cos t, \quad y^{\prime}=x-2 y+\sin t, \quad x(0)=0, y(0)=1 .
$$

What happens to the solution as $t \rightarrow \infty$?

Problem 3

a

Consider the system

$$
\begin{equation*}
x^{\prime}=f(x, y), \quad y^{\prime}=g(x, y), \tag{2}
\end{equation*}
$$

where $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are smooth functions. Find conditions on f, g such that this system is a gradient system.

Similarly, determine conditions on f, g such that the system is a Hamiltonian system.

b

Consider the nonlinear system

$$
\begin{equation*}
x^{\prime}=\sin (x), \quad y^{\prime}=-y \cos (x) \tag{3}
\end{equation*}
$$

Explain why this is a Hamiltonian system, and determine the Hamiltonian function $H(x, y)$.
(Continued on page 4.)

c

Find the equilibrium solutions of (3) and use linearization to determine their stability properties. Plot the phase portrait and level sets of the Hamiltonian H (contour plot).

d

We say that the system

$$
\begin{equation*}
x^{\prime}=g(x, y), \quad y^{\prime}=-f(x, y) \tag{4}
\end{equation*}
$$

is orthogonal to the system (2). Prove that the solution curves of (2) and (4) are orthogonal. Moreover, prove that the orthogonal of a Hamiltonian system is a gradient system.

e

Consider the nonlinear system

$$
\begin{equation*}
x^{\prime}=-y \cos (x), \quad y^{\prime}=-\sin (x) \tag{5}
\end{equation*}
$$

Explain why this is a gradient system. Find the equilibrium solutions and use linearization to determine their stability properties.

f

Consider the nonlinear system

$$
X^{\prime}=-\nabla V(X)
$$

where $V: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a smooth function. Suppose X^{\star} is a strict local minimum of V. State the Liapunov stability theorem and explain how to use it to conclude that X^{\star} is a stable equilibrium solution. Provide a definition of "stable" equilibrium solution.

g

Consider problem (f) and the gradient system stated there. Use the method of linearization to prove that the equilibrium solution X^{\star} is stable.

Problem 4

Consider the nonlinear system

$$
\begin{equation*}
x^{\prime}=x(1-x / a-y), \quad y^{\prime}=y(x-1), \tag{6}
\end{equation*}
$$

where $a>1$ is a constant.

a

Determine the nontrivial equilibrium solution $\left(x^{\star}, y^{\star}\right) \neq(0,0)$. Use the Liapunov stability theorem to prove that $\left(x^{\star}, y^{\star}\right)$ is asymptotically stable. Provide a definition of "asymptotically stable" equilibrium solution.

Hint: Use

$$
V(x, y)=x-\ln x+y+C \ln y, \quad(x, y) \in O:=\{x>0, y>0\}
$$

with an appropriately chosen C, to construct a strict Liapunov function.

b

Consider the nonlinear system (6), and the nontrivial equilibrium solution $\left(x^{\star}, y^{\star}\right)$. Let $(x(t), y(t))$ be a T-periodic solution of (6). Prove that

$$
\langle x\rangle_{T}:=\frac{1}{T} \int_{0}^{T} x(t) d t=x^{\star}, \quad\langle y\rangle_{T}:=\frac{1}{T} \int_{0}^{T} y(t) d t=y^{\star}
$$

