UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:	MAT3440 — Dynamical systems
Day of examination:	Friday, June 12th, 2020
Examination hours:	09.00, June 12-09.00, June 19
This problem set consists of 5 pages.	
Appendices:	None
Permitted aids:	All aids are allowed.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

a

Solve the differential equation

$$x' = -\frac{1}{1+t}x + 2, \qquad x(0) = 1,$$
(1)

by assuming that the solution is of the form

$$x(t) = h(t)i(t),$$

where h solves the homogenous problem and i(t) must be determined.

\mathbf{b}

Solve the nonlinear differential equation

 $x' = e^x, \quad x(0) = x_0.$

What is the maximal time interval $(-\infty, T)$ on which the solution exists? Denote by $\phi_t(x_0)$ the flow. Verify that $\phi_{t+s}(x_0) = \phi_s(\phi_t(x_0))$.

С

Use the "intermediate value theorem" to prove that there exists an equilibrium solution x^\star to the differential equation

$$x' = f(x) = x - \cos(x).$$

Classify the stability of x^* —unstable (source) or stable (sink). Plot (on a computer) slope fields and phase lines.

(Continued on page 2.)

d

Consider the nonlinear differential equation

$$x' = f_r(x) := r - x^2,$$

which depends on a parameter $r \in \mathbb{R}$. Determine the equilibrium solutions and classify their stability (unstable / stable). Plot (on a computer) slope fields, phase lines, and a bifurcation diagram.

 \mathbf{e}

Consider the nonlinear differential equation

$$x' = f_r(x) := -x + r \tanh(x),$$

which depends on a parameter $r \in \mathbb{R}$. Discuss the equilibrium solutions and their stability. Make relevant plots on a computer, including slope fields, phase lines, and a bifurcation diagram.

f

Consider the nonlinear differential equation

$$x' = f_r(x) := rx - x^3,$$

depending on a parameter $r \in \mathbb{R}$. Write the equation in gradient form,

$$x' = -\frac{d}{dx}V_r(x),$$

for some function $V_r : \mathbb{R} \to \mathbb{R}$. Plot $V_r(x)$ for different values of r, and determine the local extrema (minima / maxima) of V_r . Prove that V_r decreases along solutions x(t). What is the correspondence between local extrema of V_r and equilibrium solutions of the differential equation (recall the equilibrium solutions and their stability)?

\mathbf{g}

Consider the nonlinear differential equation

$$x' = f(x) := -x^3.$$

Why does the linearization method fail to determine the stability of the equilibrium solution 0. Use Liapunov's stability theorem to prove that the origin is stable

Problem 2

а

Show that the approximations defined by Picard iterations converge to the solution $X(t) = \exp(tA)X_0$ of the linear system

$$X' = F(X) = AX, \quad X(0) = X_0, \qquad X_0 \in \mathbb{R}^n, A \in \mathbb{R}^{n \times n}.$$

(Continued on page 3.)

 \mathbf{b}

Use trace-determinant analysis to determine if the linear system x' = Ax has a saddle, (spiral) sink, (spiral) source or center at the origin:

(i)
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
, (ii) $A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$, (iii) $A = \begin{pmatrix} 0 & -1 \\ 2 & -3 \end{pmatrix}$,

and

(iv)
$$A = \begin{pmatrix} r & -1 \\ 1 & r \end{pmatrix}, \quad r \in \mathbb{R}.$$

С

Use the matrix exponential to solve the initial-value problem

$$x' = -2x + y, \quad y' = -2y, \qquad x(0) = x_0, \ y(0) = y_0$$

Sketch the phase portrait.

d

Use the matrix exponential to solve the initial-value problem

$$x' = -2x - y, \quad y' = x - 2y, \qquad x(0) = x_0, \ y(0) = y_0$$

Sketch the phase portrait.

\mathbf{e}

Solve the initial–value problem

 $x' = -2x - y + \cos t, \quad y' = x - 2y + \sin t, \qquad x(0) = 0, \ y(0) = 1.$

What happens to the solution as $t \to \infty$?

Problem 3

a

Consider the system

$$x' = f(x, y), \qquad y' = g(x, y),$$
 (2)

where $f, g: \mathbb{R}^2 \to \mathbb{R}$ are smooth functions. Find conditions on f, g such that this system is a gradient system.

Similarly, determine conditions on f, g such that the system is a Hamiltonian system.

\mathbf{b}

Consider the nonlinear system

$$x' = \sin(x), \quad y' = -y\cos(x).$$
 (3)

Explain why this is a Hamiltonian system, and determine the Hamiltonian function H(x, y).

(Continued on page 4.)

С

Find the equilibrium solutions of (3) and use linearization to determine their stability properties. Plot the phase portrait and level sets of the Hamiltonian H (contour plot).

d

We say that the system

$$x' = g(x, y), \qquad y' = -f(x, y)$$
 (4)

is *orthogonal* to the system (2). Prove that the solution curves of (2) and (4) are orthogonal. Moreover, prove that the orthogonal of a Hamiltonian system is a gradient system.

\mathbf{e}

Consider the nonlinear system

$$x' = -y\cos(x), \quad y' = -\sin(x).$$
 (5)

Explain why this is a gradient system. Find the equilibrium solutions and use linearization to determine their stability properties.

f

Consider the nonlinear system

$$X' = -\nabla V(X),$$

where $V : \mathbb{R}^2 \to \mathbb{R}$ is a smooth function. Suppose X^* is a strict local minimum of V. State the Liapunov stability theorem and explain how to use it to conclude that X^* is a stable equilibrium solution. Provide a definition of "stable" equilibrium solution.

\mathbf{g}

Consider problem (f) and the gradient system stated there. Use the method of linearization to prove that the equilibrium solution X^* is stable.

Problem 4

Consider the nonlinear system

$$x' = x (1 - x/a - y), \qquad y' = y (x - 1),$$
(6)

where a > 1 is a constant.

(Continued on page 5.)

а

Determine the nontrivial equilibrium solution $(x^*, y^*) \neq (0, 0)$. Use the Liapunov stability theorem to prove that (x^*, y^*) is asymptotically stable. Provide a definition of "asymptotically stable" equilibrium solution.

 $\underline{\mathrm{Hint}}: \ \mathrm{Use}$

$$V(x,y) = x - \ln x + y + C \ln y, \quad (x,y) \in O := \{x > 0, y > 0\},\$$

with an appropriately chosen C, to construct a strict Liapunov function.

 \mathbf{b}

Consider the nonlinear system (6), and the nontrivial equilibrium solution (x^*, y^*) . Let (x(t), y(t)) be a *T*-periodic solution of (6). Prove that

$$\langle x \rangle_T := \frac{1}{T} \int_0^T x(t) dt = x^\star, \qquad \langle y \rangle_T := \frac{1}{T} \int_0^T y(t) dt = y^\star.$$

THE END