
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Exam in: MAT3440 –– Dynamical systems

Day of examination: Friday, June 12th, 2020

Examination hours: 09.00, June 12 – 09.00, June 19

This problem set consists of 17 pages.

Appendices: None

Permitted aids: All aids are allowed.

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Problem 1

a

Solve the differential equation

x′ = − 1

1 + t
x+ 2, x(0) = 1, (1)

by assuming that the solution is of the form

x(t) = h(t)i(t),

where h solves the homogenous problem and i(t) must be determined.

Answer: Set a(t) = −1/(1 + t) and note that∫ t

0
a(s) ds = − ln(1 + t) = ln

(
1

1 + t

)
.

The solution of
h′ = a(t)h, h(0) = 1,

is

h(t) = exp

(∫ t

0
a(s) ds

)
=

1

1 + t
.

Let us guess a solution of (1) of the form

x(t) = h(t)i(t),

where i(t) must be determined such that i(0) = 1. Note that

x′ = h′i+ hi′ = a(t)hi+ hi′

(Continued on page 2.)
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and this should equate to

a(t)x+ 2 = a(t)hi+ 2.

In other words, we must have hi′ = 2 or

i(t) =

∫ t

0

2

h(t)
dt = (1 + t)2.

Hence, the solution of (1) is

x(t) = h(t)i(t) = 1 + t.

b

Solve the nonlinear differential equation

x′ = ex, x(0) = x0.

What is the maximal time interval (−∞, T ) on which the solution exists?
Denote by φt(x0) the flow. Verify that φt+s(x0) = φs (φt(x0)).

Answer: Separating variables, we write∫
e−x dx =

∫
dt

or −e−x = t+ C. Since x(0) = x0, we find C = −e−x0 . Solving for x in the
equation e−x = e−x0 − t gives

x(t) = − ln
(
e−x0 − t

)
.

The solution exists as long as e−x0 − t > 0, so that T = e−x0 .
We have

φt(x0) = − ln
(
e−x0 − t

)
.

Note that
φt+s(x0) = − ln

(
e−x0 − t− s

)
and

φs (φt(x0)) = φs
(
− ln

(
e−x0 − t

))
= − ln

(
e−(− ln(e−x0−t)) − s

)
= − ln

(
eln(e

−x0−t) − s
)
= − ln

(
e−x0 − t− s

)
,

and therefore φt+s(x0) = φs (φt(x0)).

c

Use the “intermediate value theorem” to prove that there exists an
equilibrium solution x? to the differential equation

x′ = f(x) = x− cos(x).

Classify the stability of x? —unstable (source) or stable (sink). Plot (on a
computer) slope fields and phase lines.

(Continued on page 3.)
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Answer: The intermediate value theorem states that if f is a continuous
function whose domain contains the interval [a, b], then it takes on any given
value between f(a) and f(b) at some point within the interval [a, b]. Clearly
f(x) = x − cos(x) is continuous. Let us take a = 0, f(0) = −1 < 0 and
b = π/2, f(π/2) = π/2 > 0. Then, by the intermediate value theorem, there
exists x? such that f(x?) = 0. Next, we compute f ′(x) = 1 + sin(x) and so
f ′(x?) > 0 since x? ∈ (0, π/2). Hence, x? is unstable. See Figure 1.

Figure 1: Problem 1–(c). f(x) = x− cos(x) and phase line (top) and slope
field (bottom)

(Continued on page 4.)
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d

Consider the nonlinear differential equation

x′ = fr(x) := r − x2,

which depends on a parameter r ∈ R. Determine the equilibrium solutions
and classify their stability (unstable / stable). Plot (on a computer) slope
fields, phase lines, and a bifurcation diagram.

Answer: The equilibrium solutions are x? = ±
√
r if r ≥ 0 and none if r < 0.

Since f ′ (±
√
r) = ∓2

√
r if r ≥ 0. Hence,

√
r is stable, while −

√
r is unstable.

At the bifurcation point r = 0, we have f ′(0) = 0. See Figure 2

Figure 2: Problem 1–(d). f(x) = 1 − x2 (upper-left, r = 1), f(x) = −x2
(upper-right, r = 0), bifurcation plot (middle), and slope fields (bottom).

(Continued on page 5.)
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e

Consider the nonlinear differential equation

x′ = fr(x) := −x+ r tanh(x),

which depends on a parameter r ∈ R. Discuss the equilibrium solutions and
their stability. Make relevant plots on a computer, including slope fields,
phase lines, and a bifurcation diagram.

Answer: The equilibrium solutions are given by the intersection of the graphs
of y = x and y = r tanh(x). By plotting these graphs for different values of
r, we see that there is one equilibrium solution at the origin if r < 1. As
f ′r(0) = r − 1, the origin is stable if r < 1. A pitchfork bifurcation occurs at
r = 1, x? = 0. For r > 1, there are are two additional equilibrium solutions
(both stable), while the origin becomes unstable. See Figures 3 and 4.

Figure 3: Problem 1-(e).

(Continued on page 6.)
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Figure 4: Problem 1-(e). Bifurcation plot.

f

Consider the nonlinear differential equation

x′ = fr(x) := rx− x3,

depending on a parameter r ∈ R. Write the equation in gradient form,

x′ = − d

dx
Vr(x),

for some function Vr : R → R. Plot Vr(x) for different values of r, and
determine the local extrema (minima / maxima) of Vr. Prove that Vr
decreases along solutions x(t). What is the correspondence between local
extrema of Vr and equilibrium solutions of the differential equation (recall
the equilibrium solutions and their stability)?

Answer: Setting

Vr(x) =
r

2
x2 − 1

4
x4,

we obtain x′ = − d
dxVr(x). See Figure 5.

If r ≤ 0, then Vr has a local minimum at x = 0. If r > 0, then Vr has
local minima at x = ±

√
r and a local maximum at x = 0. Let x(t) be a

solution of the differential equation. Then

d

dt
Vr(x(t)) = V ′r (x(t))x

′(t) = −
(
V ′r (x(t))

)2 ≤ 0.

The equilibrium solutions of the equation are x? = 0 for any r (stable if
r < 0, unstable if r > 0) and x? = ±

√
r for r > 0 (stable), see for example the

mandatory assignment. Consequently, a local minimum of Vr corresponds
to a stable equilibrium solution and a local maximum corresponds to an
unstable equilibrium solution.

(Continued on page 7.)
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Figure 5: Problem 1-(f).

g

Consider the nonlinear differential equation

x′ = f(x) := −x3.

Why does the linearization method fail to determine the stability of the
equilibrium solution 0. Use Liapunov’s stability theorem to prove that the
origin is stable

Answer: Since f ′(0) = 0, the linearization method does not apply. Set
L(x) = 1

4x
4 (motivated by the previous problem). Clearly, L(0) = 0 and

L(x) > 0 for all x 6= 0. Moreover,

L′(x)f(x) = −x6 ≤ 0.

Hence, L is a Liapunov function. The stability of the origin then follows
from the Liapunov stability theorem.

Problem 2

a

Show that the approximations defined by Picard iterations converge to the
solution X(t) = exp(tA)X0 of the linear system

X ′ = F (X) = AX, X(0) = X0, X0 ∈ Rn, A ∈ Rn×n.

Answer: Consider the Picard iterations {uk(t)}∞k=0 defined by u0(t) = x0 and

uk+1(t) = x0 +

∫ t

0
F (uk(s)) ds, k = 0, 1, 2, . . . .

For k ≥ 0, it is easy to check that

uk(t) = X0 + tAX0 +
(tA)2

2!
X0 + . . .+

(tA)k

k!
X0

=

(
I + tA+

(tA)2

2!
+ . . .+

(tA)k

k!

)
X0,

and therefore

lim
k→∞

uk(t) =

( ∞∑
I=0

(tA)k

k!

)
X0 = exp(tA)X0.

(Continued on page 8.)
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b

Use trace–determinant analysis to determine if the linear system x′ = Ax
has a saddle, (spiral) sink, (spiral) source or center at the origin:

(i) A =

(
1 2
3 4

)
, (ii) A =

(
3 1
1 3

)
, (iii) A =

(
0 −1
2 −3

)
,

and

(iv) A =

(
r −1
1 r

)
, r ∈ R.

Answer: For a general matrix A =

(
a b
c d

)
, we define

D = det (A) = ad− cd, T = trace (A) = a+ d.

(i) We compute
D = det (A) = −2 < 0,

which implies a saddle at the origin.
(ii) We compute

D = det (A) = 8 > 0, T = trace (A) = 6 > 0, T 2 − 4D = 4 > 0,

which implies a source at the origin.
(iii) We compute

D = det (A) = 2 > 0, T = trace (A) = −3 < 0, T 2 − 4D = 1 > 0

which implies a sink at the origin.
(iv) We compute

D = det (A) = 1 + r2 > 0, T = trace (A) = 2r,

and
T 2 − 4D = 4r2 − 4(r2 + 1) = −4 < 0.

If r > 0, then T > 0 and we have a spiral source at the origin. If r < 0, then
T < 0 and we have a spiral sink at the origin. Finally, if r = 0, then T = 0
and we have a center at the origin.

c

Use the matrix exponential to solve the initial–value problem

x′ = −2x+ y, y′ = −2y, x(0) = x0, y(0) = y0.

Sketch the phase portrait.

Answer: We write the system in the form

X ′ = AX, X(0) = X0, A =

(
−2 1
0 −2

)
.

(Continued on page 9.)
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The solution is
X(t) = exp(tA)X0.

Let us compute exp(tA). Note that

tA = D +B, D = −2tI, B =

(
0 t
0 0

)
.

Clearly, DB = BA and therefore

exp(tA) = exp(D) exp(B),

where exp(D) = e−2tI and, since Bk = 0 for k ≥ 2,

exp(B) = I +B +
B2

2!
+
B3

3!
+ · · · =

(
1 t
0 1

)
.

Consequently,

exp(tA) = e−2t
(
1 t
0 1

)
,

and hence
x(t) = e−2t(x0 + y0t), y(t) = e−2ty0.

See Figure 6 for the phase portrait.

Figure 6: Problem 2-(c). Phase portrait.

d

Use the matrix exponential to solve the initial–value problem

x′ = −2x− y, y′ = x− 2y, x(0) = x0, y(0) = y0.

Sketch the phase portrait.

Answer: We write the system in the form

X ′ = AX, X(0) = X0, A =

(
−2 −1
1 −2

)
.

(Continued on page 10.)
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The solution is
X(t) = exp(tA)X0.

From the mandatory assignment (for example), we know that

B =

(
a −b
b a

)
=⇒ exp(B) = ea

(
cos b − sin b
sin b cos b

)
.

Using this with a = −2t and b = t, we find

exp(tA) = e−2t
(
cos t − sin t
sin t cos t

)
,

and thus

x(t) = e−2t(x0 cos t− y0 sin t), y(t) = e−2t (x0 sin t+ y0 cos t) .

See Figure 7 for the phase portrait (spiral sink).

Figure 7: Problem 2-(d). Phase portrait.

e

Solve the initial–value problem

x′ = −2x− y + cos t, y′ = x− 2y + sin t, x(0) = 0, y(0) = 1.

What happens to the solution as t→∞?

Answer: We write the system in the form

X ′ = AX +G(t), X(0) = X0 =

(
0
1

)
,

A =

(
−2 −1
1 −2

)
, G(t) =

(
cos t
sin t

)
.

(Continued on page 11.)
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By the "variation of parameters" formula, the solution takes the form

X(t) = exp(tA)X0 + exp(tA)

∫ t

0
exp(−sA)G(s) ds.

By Problem 2–(d), we have exp(tA) = e−2t
(
cos t − sin t
sin t cos t

)
and

exp(tA)X0 = e−2t
(
− sin t
cos t

)
. Moreover,

exp(−sA)G(s) = e2s
(

cos s sin s
− sin s cos s

)(
cos s
sin s

)
= e2s

(
1
0

)
,

∫ t

0
exp(−sA)G(s) ds = 1

2

(
e2t − 1

)(1
0

)
,

and

exp(tA)

∫ t

0
exp(−sA)G(s) ds

= e−2t
(
cos t − sin t
sin t cos t

)
1

2

(
e2t − 1

)(1
0

)
=

1

2

(
1− e−2t

)(cos t
sin t

)
Summarizing,

X(t) = e−2t
(
− sin t
cos t

)
+

1

2

(
1− e−2t

)(cos t
sin t

)
=

1

2

(
cos t
sin t

)
+
e−2t

2

(
− cos t− 2 sin t
2 cos t− sin t

)
.

Finally, we observe that

lim
t→∞

∣∣∣∣X(t)− 1

2

(
cos t
sin t

)∣∣∣∣ = 0.

Problem 3

a

Consider the system

x′ = f(x, y), y′ = g(x, y), (2)

where f, g : R2 → R are smooth functions. Find conditions on f, g such that
this system is a gradient system.

Similarly, determine conditions on f, g such that the system is a
Hamiltonian system.

Answer: The system (2) is a gradient system,

X ′ = −∇V (X), for some V : R2 → R,

(Continued on page 12.)
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if and only if
∂V

∂x
= −f, ∂V

∂y
= −g.

Differentiating the first equation with respect to y and the second one with
respect to x, we obtain the requirement (since Vxy = Vyx)

∂f

∂y
=
∂g

∂x
.

In other words, the (two-dimensional) curl of the vector field F = (f, g) is
zero: curlF = gx − fy = 0.

The system (2) is a Hamiltonian system if and only if

x′ =
∂H

∂y
, y′ = −∂H

∂x
, for some H : R2 → R.

This translates into the requirement

∂H

∂y
= f,

∂H

∂x
= −g,

and thus (since Hyx = Hxy)

∂f

∂x
= −∂g

∂y
.

In other words, the vector field F = (f, g) is divergence-free: ∇ · F = 0.

b

Consider the nonlinear system

x′ = sin(x), y′ = −y cos(x). (3)

Explain why this is a Hamiltonian system, and determine the Hamiltonian
function H(x, y).

Answer: According to the previous problem with f(x, y) = sin(x) and
g(x, y) = −y cos(x), we compute the divergence of F := (f, g):

∇ · F =
∂f

∂x
+
∂g

∂y
= cos(x)− cos(x) = 0,

and so (3) is a Hamiltonian system. The Hamiltonian H satisfies

∂2H

∂x∂y
=
∂f

∂x
= −∂g

∂y
= cos(x).

In view of this (for example), we specify

H(x, y) = sin(x)y.

(Continued on page 13.)
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c

Find the equilibrium solutions of (3) and use linearization to determine their
stability properties. Plot the phase portrait and level sets of the Hamiltonian
H (contour plot).

Answer: The equilibrium solutions are given by

sin(x) = 0, y cos(x) = 0 ⇐⇒ X?
n = (x?n, y

?
n) = (nπ, 0),

for n = 0,±1,±2, . . .. Set F =
(
sin(x),−y cos(x)

)
, and compute

DF =

(
cos(x) 0
y sin(x) − cos(x)

)
.

The linearized system is

X ′ = AX, A = DF (X?
n) = (−1)n

(
1 0
0 −1

)
.

The eigenvalues of A are λ = ±1, one negative and one positive. Hence the
equilibrium solutions X? are all saddles. See Figure 8.

Figure 8: Problem 8–(c). Left: phase portrait of the system (3). Right:
contour plot of the Hamiltonian H(x, y) = sin(x)y.

d

We say that the system

x′ = g(x, y), y′ = −f(x, y) (4)

is orthogonal to the system (2). Prove that the solution curves of (2) and
(4) are orthogonal. Moreover, prove that the orthogonal of a Hamiltonian
system is a gradient system.

Answer: Denote by X(t) the solution of (2) and by XO(t) the solution of
(4). Then

X ′(t) ·X ′O(t) = (f, g) · (g,−f) = fg − gf = 0.

(Continued on page 14.)



Exam in MAT3440, Friday, June 12th, 2020 Page 14

Next, consider a Hamiltonian system

x′ =
∂H

∂y
, y′ = −∂H

∂x
.

The orthogonal of this system is

x′ = −∂H
∂x

. x′ = −∂H
∂y

and thus, with X = (x, y) and V (X) = H(X),

X ′ = −∇V (X),

which is a gradient system.

e

Consider the nonlinear system

x′ = −y cos(x), y′ = − sin(x). (5)

Explain why this is a gradient system. Find the equilibrium solutions and
use linearization to determine their stability properties.

Answer: We apply the previous problem (d), noting that (5) is the orthogonal
of the Hamiltonian system (3). Alternatively, we explicitly write

X ′ = −∇V (X), X = (x, y), V (X) = sin(x)y.

The equilibrium solutions are given by

X?
n = (x?n, y

?
n) = (nπ, 0),

for n = 0,±1,±2, . . .. Set F =
(
−y cos(x),− sin(x)

)
, and compute

DF =

(
y sin(x) − cos(x)
− cos(x) 0

)
.

The linearized system is

X ′ = AX, A = DF (X?
n) = (−1)n

(
0 −1
−1 0

)
.

The eigenvalues of A are λ = ±1, so the equilibrium solutions are saddles.

f

Consider the nonlinear system

X ′ = −∇V (X),

where V : R2 → R is a smooth function. Suppose X? is a strict local
minimum of V . State the Liapunov stability theorem and explain how to use
it to conclude that X? is a stable equilibrium solution. Provide a definition
of “stable” equilibrium solution.

(Continued on page 15.)
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Answer: By assumption, X? is local minimum. This implies ∇V (X?) = 0
and thusX? is an equilibrium solution. The equilibrium solutionX? is stable
if and only if for any ε > 0 there exists δ > 0 such that

|X0 −X?| < δ =⇒ |X(t)−X?| < ε ∀t ≥ 0.

The Liapunov stability theorem can be found in the book on page 193. To
conclude the stability of X? it is enough to exhibit a Liapunov function L,
i.e., L(X?) = 0, L(X) > 0 if X 6= X?, and

−∇L(X) · ∇V (X) ≤ 0, ∀X 6= X?.

Since X? is a strict local minimum of V , it is easy to check that

L(X) = V (X)− V (X?)

is a Liapunov function (locally around X?).

g

Consider problem (f) and the gradient system stated there. Use the method
of linearization to prove that the equilibrium solution X? is stable.

Answer: Set F (X) = −∇V (X). Then −DF (X) equals the Hessian of V ,
i.e., DF (X) = −D2V (X). The linearized system is

X ′ = AX, A = DF (X?
n) = −D2V (X?

n).

Note that A is a symmetric matrix, which implies that the eigenvalues of A
are real. Recall that X? is a local minimum of V . Hence, the Hessian of V
at X? is positive definite and so A is a negative definite matrix, i.e.,

A < 0 (which means X>AX < 0 ∀X 6= 0).

We recall that the matrix A is negative definite if and only if all of its
eigenvalues are negative. Hence, the equilibrium solution X? is stable.

Problem 4

Consider the nonlinear system

x′ = x (1− x/a− y) , y′ = y (x− 1) , (6)

where a > 1 is a constant.

a

Determine the nontrivial equilibrium solution (x?, y?) 6= (0, 0). Use the
Liapunov stability theorem to prove that (x?, y?) is asymptotically stable.
Provide a definition of “asymptotically stable” equilibrium solution.

Hint: Use

V (x, y) = x− lnx+ y + C ln y, (x, y) ∈ O := {x > 0, y > 0},

(Continued on page 16.)
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with an appropriately chosen C, to construct a strict Liapunov function.

Answer: The nontrivial equilibrium solution is

x? = 1, y? = 1− 1

a
,

so that (x?, y?) belongs to the region O. Let us define

L(x, y) := V (x, y)− V (x?, y?).

Below we justify the choice C = 1
a − 1 < 0. See Figure 9. Then

Figure 9: Problem 3–(a). Liapunov function L(x, y) with a = 2 and thus
C = −1/2, which implies (x?, y?) = (1, 1/2).

L(x?, y?) = 0, L(x, y) > 0 ∀(x, y) 6= (x?, y?).

Set F =
(
x (1− x/a− y) , y (x− 1)

)
, and let us compute

∇L(x, y) · F (x, y)
= (1− 1/x, 1 + C/y) · (x (1− x/a− y) , y (x− 1))

= −1

a
(x− 1)(x− a− aC)

= −1

a
(x− 1)2 ≤ 0 (if C = 1/a− 1).

Hence, since (with C = 1
a − 1)

∇L(x, y) · F (x, y) < 0, (x, y) ∈ O \ {(x?, y?)} ,

we can use the Liapunov stability theorem to conclude that (x?, y?) is
asymptotically stable. We recall that "asymptotically stable" means that
X? is stable, cf. Problem 3–(f), and δ > 0 can be chosen such that

|X0 −X?| < δ =⇒ lim
t→∞

X(t) = X?.

(Continued on page 17.)
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b

Consider the nonlinear system (6), and the nontrivial equilibrium solution
(x?, y?). Let (x(t), y(t)) be a T -periodic solution of (6). Prove that

〈x〉T :=
1

T

∫ T

0
x(t) dt = x?, 〈y〉T :=

1

T

∫ T

0
y(t) dt = y?.

Answer: Using (6), we obtain

d

dt
lnx(t) =

x′(t)

x(t)
= 1− x/a− y

and
d

dt
ln y(t) =

y′(t)

y(t)
= x(t)− 1.

Let us compute the T -averages of these equations:〈
d

dt
lnx

〉
T

= 1− 1

a
〈x〉T − 〈y〉T

and 〈
d

dt
ln y

〉
T

= 〈x〉T − 1.

By the T -periodicity of x(t) and y(t),〈
d

dt
lnx

〉
T

=
1

T
(lnx(T )− lnx(0)) = 0

and 〈
d

dt
ln y

〉
T

=
1

T
(ln y(T )− ln y(0)) = 0.

Hence, 〈x〉T = 1 = x? and 〈y〉T = 1− 1
a = y?.

THE END


