UNIVERSITY OF OSLO Faculty of mathematics and natural sciences

Exam in: MAT3440 - Dynamical systems
Day of examination: Friday, June 12th, 2020
Examination hours: 09.00, June 12-09.00, June 19
This problem set consists of 17 pages.
Appendices: None
Permitted aids: All aids are allowed.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

a

Solve the differential equation

$$
\begin{equation*}
x^{\prime}=-\frac{1}{1+t} x+2, \quad x(0)=1 \tag{1}
\end{equation*}
$$

by assuming that the solution is of the form

$$
x(t)=h(t) i(t)
$$

where h solves the homogenous problem and $i(t)$ must be determined.

Answer: Set $a(t)=-1 /(1+t)$ and note that

$$
\int_{0}^{t} a(s) d s=-\ln (1+t)=\ln \left(\frac{1}{1+t}\right)
$$

The solution of

$$
h^{\prime}=a(t) h, \quad h(0)=1,
$$

is

$$
h(t)=\exp \left(\int_{0}^{t} a(s) d s\right)=\frac{1}{1+t} .
$$

Let us guess a solution of (1) of the form

$$
x(t)=h(t) i(t)
$$

where $i(t)$ must be determined such that $i(0)=1$. Note that

$$
x^{\prime}=h^{\prime} i+h i^{\prime}=a(t) h i+h i^{\prime}
$$

and this should equate to

$$
a(t) x+2=a(t) h i+2 .
$$

In other words, we must have $h i^{\prime}=2$ or

$$
i(t)=\int_{0}^{t} \frac{2}{h(t)} d t=(1+t)^{2} .
$$

Hence, the solution of (1) is

$$
x(t)=h(t) i(t)=1+t .
$$

b

Solve the nonlinear differential equation

$$
x^{\prime}=e^{x}, \quad x(0)=x_{0} .
$$

What is the maximal time interval $(-\infty, T)$ on which the solution exists? Denote by $\phi_{t}\left(x_{0}\right)$ the flow. Verify that $\phi_{t+s}\left(x_{0}\right)=\phi_{s}\left(\phi_{t}\left(x_{0}\right)\right)$.

Answer: Separating variables, we write

$$
\int e^{-x} d x=\int d t
$$

or $-e^{-x}=t+C$. Since $x(0)=x_{0}$, we find $C=-e^{-x_{0}}$. Solving for x in the equation $e^{-x}=e^{-x_{0}}-t$ gives

$$
x(t)=-\ln \left(e^{-x_{0}}-t\right) .
$$

The solution exists as long as $e^{-x_{0}}-t>0$, so that $T=e^{-x_{0}}$.
We have

$$
\phi_{t}\left(x_{0}\right)=-\ln \left(e^{-x_{0}}-t\right) .
$$

Note that

$$
\phi_{t+s}\left(x_{0}\right)=-\ln \left(e^{-x_{0}}-t-s\right)
$$

and

$$
\begin{aligned}
\phi_{s}\left(\phi_{t}\left(x_{0}\right)\right) & =\phi_{s}\left(-\ln \left(e^{-x_{0}}-t\right)\right)=-\ln \left(e^{-\left(-\ln \left(e^{-x_{0}}-t\right)\right)}-s\right) \\
& =-\ln \left(e^{\ln \left(e^{-x_{0}}-t\right)}-s\right)=-\ln \left(e^{-x_{0}}-t-s\right),
\end{aligned}
$$

and therefore $\phi_{t+s}\left(x_{0}\right)=\phi_{s}\left(\phi_{t}\left(x_{0}\right)\right)$.

c

Use the "intermediate value theorem" to prove that there exists an equilibrium solution x^{\star} to the differential equation

$$
x^{\prime}=f(x)=x-\cos (x) .
$$

Classify the stability of x^{\star}-unstable (source) or stable (sink). Plot (on a computer) slope fields and phase lines.
(Continued on page 3.)

Answer: The intermediate value theorem states that if f is a continuous function whose domain contains the interval $[a, b]$, then it takes on any given value between $f(a)$ and $f(b)$ at some point within the interval $[a, b]$. Clearly $f(x)=x-\cos (x)$ is continuous. Let us take $a=0, f(0)=-1<0$ and $b=\pi / 2, f(\pi / 2)=\pi / 2>0$. Then, by the intermediate value theorem, there exists x^{\star} such that $f\left(x^{\star}\right)=0$. Next, we compute $f^{\prime}(x)=1+\sin (x)$ and so $f^{\prime}\left(x^{\star}\right)>0$ since $x^{\star} \in(0, \pi / 2)$. Hence, x^{\star} is unstable. See Figure 1.

Figure 1: Problem 1-(c). $f(x)=x-\cos (x)$ and phase line (top) and slope field (bottom)

d

Consider the nonlinear differential equation

$$
x^{\prime}=f_{r}(x):=r-x^{2}
$$

which depends on a parameter $r \in \mathbb{R}$. Determine the equilibrium solutions and classify their stability (unstable / stable). Plot (on a computer) slope fields, phase lines, and a bifurcation diagram.

Answer: The equilibrium solutions are $x^{\star}= \pm \sqrt{r}$ if $r \geq 0$ and none if $r<0$. Since $f^{\prime}(\pm \sqrt{r})=\mp 2 \sqrt{r}$ if $r \geq 0$. Hence, \sqrt{r} is stable, while $-\sqrt{r}$ is unstable. At the bifurcation point $r=0$, we have $f^{\prime}(0)=0$. See Figure 2

Figure 2: Problem 1-(d). $f(x)=1-x^{2}$ (upper-left, $r=1$), $f(x)=-x^{2}$ (upper-right, $r=0$), bifurcation plot (middle), and slope fields (bottom).

e

Consider the nonlinear differential equation

$$
x^{\prime}=f_{r}(x):=-x+r \tanh (x)
$$

which depends on a parameter $r \in \mathbb{R}$. Discuss the equilibrium solutions and their stability. Make relevant plots on a computer, including slope fields, phase lines, and a bifurcation diagram.

Answer: The equilibrium solutions are given by the intersection of the graphs of $y=x$ and $y=r \tanh (x)$. By plotting these graphs for different values of r, we see that there is one equilibrium solution at the origin if $r<1$. As $f_{r}^{\prime}(0)=r-1$, the origin is stable if $r<1$. A pitchfork bifurcation occurs at $r=1, x^{\star}=0$. For $r>1$, there are are two additional equilibrium solutions (both stable), while the origin becomes unstable. See Figures 3 and 4.

Figure 3: Problem 1-(e).

Figure 4: Problem 1-(e). Bifurcation plot.

f

Consider the nonlinear differential equation

$$
x^{\prime}=f_{r}(x):=r x-x^{3},
$$

depending on a parameter $r \in \mathbb{R}$. Write the equation in gradient form,

$$
x^{\prime}=-\frac{d}{d x} V_{r}(x),
$$

for some function $V_{r}: \mathbb{R} \rightarrow \mathbb{R}$. Plot $V_{r}(x)$ for different values of r, and determine the local extrema (minima / maxima) of V_{r}. Prove that V_{r} decreases along solutions $x(t)$. What is the correspondence between local extrema of V_{r} and equilibrium solutions of the differential equation (recall the equilibrium solutions and their stability)?

Answer: Setting

$$
V_{r}(x)=\frac{r}{2} x^{2}-\frac{1}{4} x^{4},
$$

we obtain $x^{\prime}=-\frac{d}{d x} V_{r}(x)$. See Figure 5.
If $r \leq 0$, then V_{r} has a local minimum at $x=0$. If $r>0$, then V_{r} has local minima at $x= \pm \sqrt{r}$ and a local maximum at $x=0$. Let $x(t)$ be a solution of the differential equation. Then

$$
\frac{d}{d t} V_{r}(x(t))=V_{r}^{\prime}(x(t)) x^{\prime}(t)=-\left(V_{r}^{\prime}(x(t))\right)^{2} \leq 0 .
$$

The equilibrium solutions of the equation are $x^{\star}=0$ for any r (stable if $r<0$, unstable if $r>0$) and $x^{\star}= \pm \sqrt{r}$ for $r>0$ (stable), see for example the mandatory assignment. Consequently, a local minimum of V_{r} corresponds to a stable equilibrium solution and a local maximum corresponds to an unstable equilibrium solution.
(Continued on page 7.)

Figure 5: Problem 1-(f).

g

Consider the nonlinear differential equation

$$
x^{\prime}=f(x):=-x^{3}
$$

Why does the linearization method fail to determine the stability of the equilibrium solution 0 . Use Liapunov's stability theorem to prove that the origin is stable

Answer: Since $f^{\prime}(0)=0$, the linearization method does not apply. Set $L(x)=\frac{1}{4} x^{4}$ (motivated by the previous problem). Clearly, $L(0)=0$ and $L(x)>0$ for all $x \neq 0$. Moreover,

$$
L^{\prime}(x) f(x)=-x^{6} \leq 0
$$

Hence, L is a Liapunov function. The stability of the origin then follows from the Liapunov stability theorem.

Problem 2

a

Show that the approximations defined by Picard iterations converge to the solution $X(t)=\exp (t A) X_{0}$ of the linear system

$$
X^{\prime}=F(X)=A X, \quad X(0)=X_{0}, \quad X_{0} \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}
$$

Answer: Consider the Picard iterations $\left\{u_{k}(t)\right\}_{k=0}^{\infty}$ defined by $u_{0}(t)=x_{0}$ and

$$
u_{k+1}(t)=x_{0}+\int_{0}^{t} F\left(u_{k}(s)\right) d s, \quad k=0,1,2, \ldots
$$

For $k \geq 0$, it is easy to check that

$$
\begin{aligned}
u_{k}(t) & =X_{0}+t A X_{0}+\frac{(t A)^{2}}{2!} X_{0}+\ldots+\frac{(t A)^{k}}{k!} X_{0} \\
& =\left(I+t A+\frac{(t A)^{2}}{2!}+\ldots+\frac{(t A)^{k}}{k!}\right) X_{0}
\end{aligned}
$$

and therefore

$$
\lim _{k \rightarrow \infty} u_{k}(t)=\left(\sum_{I=0}^{\infty} \frac{(t A)^{k}}{k!}\right) X_{0}=\exp (t A) X_{0}
$$

(Continued on page 8.)

b

Use trace-determinant analysis to determine if the linear system $x^{\prime}=A x$ has a saddle, (spiral) sink, (spiral) source or center at the origin:
(i) $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$,
(ii) $A=\left(\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right)$,
(iii) $A=\left(\begin{array}{ll}0 & -1 \\ 2 & -3\end{array}\right)$,
and

$$
\text { (iv) } A=\left(\begin{array}{cc}
r & -1 \\
1 & r
\end{array}\right), \quad r \in \mathbb{R}
$$

Answer: For a general matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, we define

$$
D=\operatorname{det}(A)=a d-c d, \quad T=\operatorname{trace}(A)=a+d
$$

(i) We compute

$$
D=\operatorname{det}(A)=-2<0
$$

which implies a saddle at the origin.
(ii) We compute

$$
D=\operatorname{det}(A)=8>0, \quad T=\operatorname{trace}(A)=6>0, \quad T^{2}-4 D=4>0
$$

which implies a source at the origin.
(iii) We compute

$$
D=\operatorname{det}(A)=2>0, \quad T=\operatorname{trace}(A)=-3<0, \quad T^{2}-4 D=1>0
$$

which implies a sink at the origin.
(iv) We compute

$$
D=\operatorname{det}(A)=1+r^{2}>0, \quad T=\operatorname{trace}(A)=2 r
$$

and

$$
T^{2}-4 D=4 r^{2}-4\left(r^{2}+1\right)=-4<0
$$

If $r>0$, then $T>0$ and we have a spiral source at the origin. If $r<0$, then $T<0$ and we have a spiral sink at the origin. Finally, if $r=0$, then $T=0$ and we have a center at the origin.

c

Use the matrix exponential to solve the initial-value problem

$$
x^{\prime}=-2 x+y, \quad y^{\prime}=-2 y, \quad x(0)=x_{0}, y(0)=y_{0} .
$$

Sketch the phase portrait.

Answer: We write the system in the form

$$
X^{\prime}=A X, \quad X(0)=X_{0}, \quad A=\left(\begin{array}{cc}
-2 & 1 \\
0 & -2
\end{array}\right)
$$

The solution is

$$
X(t)=\exp (t A) X_{0}
$$

Let us compute $\exp (t A)$. Note that

$$
t A=D+B, \quad D=-2 t I, \quad B=\left(\begin{array}{cc}
0 & t \\
0 & 0
\end{array}\right)
$$

Clearly, $D B=B A$ and therefore

$$
\exp (t A)=\exp (D) \exp (B)
$$

where $\exp (D)=e^{-2 t} I$ and, since $B^{k}=0$ for $k \geq 2$,

$$
\exp (B)=I+B+\frac{B^{2}}{2!}+\frac{B^{3}}{3!}+\cdots=\left(\begin{array}{cc}
1 & t \\
0 & 1
\end{array}\right)
$$

Consequently,

$$
\exp (t A)=e^{-2 t}\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right)
$$

and hence

$$
x(t)=e^{-2 t}\left(x_{0}+y_{0} t\right), \quad y(t)=e^{-2 t} y_{0} .
$$

See Figure 6 for the phase portrait.

Figure 6: Problem 2-(c). Phase portrait.
d

Use the matrix exponential to solve the initial-value problem

$$
x^{\prime}=-2 x-y, \quad y^{\prime}=x-2 y, \quad x(0)=x_{0}, y(0)=y_{0}
$$

Sketch the phase portrait.

Answer: We write the system in the form

$$
X^{\prime}=A X, \quad X(0)=X_{0}, \quad A=\left(\begin{array}{cc}
-2 & -1 \\
1 & -2
\end{array}\right)
$$

(Continued on page 10.)

The solution is

$$
X(t)=\exp (t A) X_{0}
$$

From the mandatory assignment (for example), we know that

$$
B=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right) \Longrightarrow \exp (B)=e^{a}\left(\begin{array}{cc}
\cos b & -\sin b \\
\sin b & \cos b
\end{array}\right)
$$

Using this with $a=-2 t$ and $b=t$, we find

$$
\exp (t A)=e^{-2 t}\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right)
$$

and thus

$$
x(t)=e^{-2 t}\left(x_{0} \cos t-y_{0} \sin t\right), \quad y(t)=e^{-2 t}\left(x_{0} \sin t+y_{0} \cos t\right) .
$$

See Figure 7 for the phase portrait (spiral sink).

Figure 7: Problem 2-(d). Phase portrait.

e

Solve the initial-value problem

$$
x^{\prime}=-2 x-y+\cos t, \quad y^{\prime}=x-2 y+\sin t, \quad x(0)=0, y(0)=1
$$

What happens to the solution as $t \rightarrow \infty$?

Answer: We write the system in the form

$$
\begin{aligned}
& X^{\prime}=A X+G(t), \quad X(0)=X_{0}=\binom{0}{1} \\
& A=\left(\begin{array}{cr}
-2 & -1 \\
1 & -2
\end{array}\right), \quad G(t)=\binom{\cos t}{\sin t}
\end{aligned}
$$

By the "variation of parameters" formula, the solution takes the form

$$
X(t)=\exp (t A) X_{0}+\exp (t A) \int_{0}^{t} \exp (-s A) G(s) d s
$$

By Problem $2-(\mathrm{d})$, we have $\exp (t A)=e^{-2 t}\left(\begin{array}{cc}\cos t & -\sin t \\ \sin t & \cos t\end{array}\right)$ and $\exp (t A) X_{0}=e^{-2 t}\binom{-\sin t}{\cos t}$. Moreover,

$$
\begin{gathered}
\exp (-s A) G(s)=e^{2 s}\left(\begin{array}{cc}
\cos s & \sin s \\
-\sin s & \cos s
\end{array}\right)\binom{\cos s}{\sin s}=e^{2 s}\binom{1}{0} \\
\int_{0}^{t} \exp (-s A) G(s) d s=\frac{1}{2}\left(e^{2 t}-1\right)\binom{1}{0}
\end{gathered}
$$

and

$$
\begin{aligned}
& \exp (t A) \int_{0}^{t} \exp (-s A) G(s) d s \\
& \quad=e^{-2 t}\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right) \frac{1}{2}\left(e^{2 t}-1\right)\binom{1}{0} \\
& \quad=\frac{1}{2}\left(1-e^{-2 t}\right)\binom{\cos t}{\sin t}
\end{aligned}
$$

Summarizing,

$$
\begin{aligned}
X(t) & =e^{-2 t}\binom{-\sin t}{\cos t}+\frac{1}{2}\left(1-e^{-2 t}\right)\binom{\cos t}{\sin t} \\
& =\frac{1}{2}\binom{\cos t}{\sin t}+\frac{e^{-2 t}}{2}\binom{-\cos t-2 \sin t}{2 \cos t-\sin t}
\end{aligned}
$$

Finally, we observe that

$$
\lim _{t \rightarrow \infty}\left|X(t)-\frac{1}{2}\binom{\cos t}{\sin t}\right|=0
$$

Problem 3

a
Consider the system

$$
\begin{equation*}
x^{\prime}=f(x, y), \quad y^{\prime}=g(x, y) \tag{2}
\end{equation*}
$$

where $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are smooth functions. Find conditions on f, g such that this system is a gradient system.

Similarly, determine conditions on f, g such that the system is a Hamiltonian system.

Answer: The system (2) is a gradient system,

$$
X^{\prime}=-\nabla V(X), \quad \text { for some } V: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

if and only if

$$
\frac{\partial V}{\partial x}=-f, \quad \frac{\partial V}{\partial y}=-g
$$

Differentiating the first equation with respect to y and the second one with respect to x, we obtain the requirement (since $V_{x y}=V_{y x}$)

$$
\frac{\partial f}{\partial y}=\frac{\partial g}{\partial x}
$$

In other words, the (two-dimensional) curl of the vector field $F=(f, g)$ is zero: curl $F=g_{x}-f_{y}=0$.

The system (2) is a Hamiltonian system if and only if

$$
x^{\prime}=\frac{\partial H}{\partial y}, \quad y^{\prime}=-\frac{\partial H}{\partial x}, \quad \text { for some } H: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

This translates into the requirement

$$
\frac{\partial H}{\partial y}=f, \quad \frac{\partial H}{\partial x}=-g
$$

and thus (since $H_{y x}=H_{x y}$)

$$
\frac{\partial f}{\partial x}=-\frac{\partial g}{\partial y}
$$

In other words, the vector field $F=(f, g)$ is divergence-free: $\nabla \cdot F=0$.

b

Consider the nonlinear system

$$
\begin{equation*}
x^{\prime}=\sin (x), \quad y^{\prime}=-y \cos (x) \tag{3}
\end{equation*}
$$

Explain why this is a Hamiltonian system, and determine the Hamiltonian function $H(x, y)$.

Answer: According to the previous problem with $f(x, y)=\sin (x)$ and $g(x, y)=-y \cos (x)$, we compute the divergence of $F:=(f, g)$:

$$
\nabla \cdot F=\frac{\partial f}{\partial x}+\frac{\partial g}{\partial y}=\cos (x)-\cos (x)=0
$$

and so (3) is a Hamiltonian system. The Hamiltonian H satisfies

$$
\frac{\partial^{2} H}{\partial x \partial y}=\frac{\partial f}{\partial x}=-\frac{\partial g}{\partial y}=\cos (x)
$$

In view of this (for example), we specify

$$
H(x, y)=\sin (x) y
$$

c

Find the equilibrium solutions of (3) and use linearization to determine their stability properties. Plot the phase portrait and level sets of the Hamiltonian H (contour plot).

Answer: The equilibrium solutions are given by

$$
\sin (x)=0, \quad y \cos (x)=0 \quad \Longleftrightarrow X_{n}^{\star}=\left(x_{n}^{\star}, y_{n}^{\star}\right)=(n \pi, 0)
$$

for $n=0, \pm 1, \pm 2, \ldots$ Set $F=(\sin (x),-y \cos (x))$, and compute

$$
D F=\left(\begin{array}{cc}
\cos (x) & 0 \\
y \sin (x) & -\cos (x)
\end{array}\right)
$$

The linearized system is

$$
X^{\prime}=A X, \quad A=D F\left(X_{n}^{\star}\right)=(-1)^{n}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

The eigenvalues of A are $\lambda= \pm 1$, one negative and one positive. Hence the equilibrium solutions X^{\star} are all saddles. See Figure 8.

Figure 8: Problem 8-(c). Left: phase portrait of the system (3). Right: contour plot of the Hamiltonian $H(x, y)=\sin (x) y$.

d

We say that the system

$$
\begin{equation*}
x^{\prime}=g(x, y), \quad y^{\prime}=-f(x, y) \tag{4}
\end{equation*}
$$

is orthogonal to the system (2). Prove that the solution curves of (2) and (4) are orthogonal. Moreover, prove that the orthogonal of a Hamiltonian system is a gradient system.

Answer: Denote by $X(t)$ the solution of (2) and by $X_{O}(t)$ the solution of (4). Then

$$
X^{\prime}(t) \cdot X_{O}^{\prime}(t)=(f, g) \cdot(g,-f)=f g-g f=0
$$

(Continued on page 14.)

Next, consider a Hamiltonian system

$$
x^{\prime}=\frac{\partial H}{\partial y}, \quad y^{\prime}=-\frac{\partial H}{\partial x}
$$

The orthogonal of this system is

$$
x^{\prime}=-\frac{\partial H}{\partial x} . \quad x^{\prime}=-\frac{\partial H}{\partial y}
$$

and thus, with $X=(x, y)$ and $V(X)=H(X)$,

$$
X^{\prime}=-\nabla V(X)
$$

which is a gradient system.

e

Consider the nonlinear system

$$
\begin{equation*}
x^{\prime}=-y \cos (x), \quad y^{\prime}=-\sin (x) \tag{5}
\end{equation*}
$$

Explain why this is a gradient system. Find the equilibrium solutions and use linearization to determine their stability properties.

Answer: We apply the previous problem (d), noting that (5) is the orthogonal of the Hamiltonian system (3). Alternatively, we explicitly write

$$
X^{\prime}=-\nabla V(X), \quad X=(x, y), \quad V(X)=\sin (x) y
$$

The equilibrium solutions are given by

$$
X_{n}^{\star}=\left(x_{n}^{\star}, y_{n}^{\star}\right)=(n \pi, 0)
$$

for $n=0, \pm 1, \pm 2, \ldots$ Set $F=(-y \cos (x),-\sin (x))$, and compute

$$
D F=\left(\begin{array}{cc}
y \sin (x) & -\cos (x) \\
-\cos (x) & 0
\end{array}\right)
$$

The linearized system is

$$
X^{\prime}=A X, \quad A=D F\left(X_{n}^{\star}\right)=(-1)^{n}\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)
$$

The eigenvalues of A are $\lambda= \pm 1$, so the equilibrium solutions are saddles.

f

Consider the nonlinear system

$$
X^{\prime}=-\nabla V(X)
$$

where $V: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a smooth function. Suppose X^{\star} is a strict local minimum of V. State the Liapunov stability theorem and explain how to use it to conclude that X^{\star} is a stable equilibrium solution. Provide a definition of "stable" equilibrium solution.

Answer: By assumption, X^{\star} is local minimum. This implies $\nabla V\left(X^{\star}\right)=0$ and thus X^{\star} is an equilibrium solution. The equilibrium solution X^{\star} is stable if and only if for any $\varepsilon>0$ there exists $\delta>0$ such that

$$
\left|X_{0}-X^{\star}\right|<\delta \Longrightarrow\left|X(t)-X^{\star}\right|<\varepsilon \quad \forall t \geq 0
$$

The Liapunov stability theorem can be found in the book on page 193. To conclude the stability of X^{\star} it is enough to exhibit a Liapunov function L, i.e., $L\left(X^{\star}\right)=0, L(X)>0$ if $X \neq X^{\star}$, and

$$
-\nabla L(X) \cdot \nabla V(X) \leq 0, \quad \forall X \neq X^{\star}
$$

Since X^{\star} is a strict local minimum of V, it is easy to check that

$$
L(X)=V(X)-V\left(X^{\star}\right)
$$

is a Liapunov function (locally around X^{\star}).

g

Consider problem (f) and the gradient system stated there. Use the method of linearization to prove that the equilibrium solution X^{\star} is stable.

Answer: Set $F(X)=-\nabla V(X)$. Then $-D F(X)$ equals the Hessian of V, i.e., $D F(X)=-D^{2} V(X)$. The linearized system is

$$
X^{\prime}=A X, \quad A=D F\left(X_{n}^{\star}\right)=-D^{2} V\left(X_{n}^{\star}\right)
$$

Note that A is a symmetric matrix, which implies that the eigenvalues of A are real. Recall that X^{\star} is a local minimum of V. Hence, the Hessian of V at X^{\star} is positive definite and so A is a negative definite matrix, i.e.,

$$
\left.A<0 \quad \text { (which means } X^{\top} A X<0 \forall X \neq 0\right)
$$

We recall that the matrix A is negative definite if and only if all of its eigenvalues are negative. Hence, the equilibrium solution X^{\star} is stable.

Problem 4

Consider the nonlinear system

$$
\begin{equation*}
x^{\prime}=x(1-x / a-y), \quad y^{\prime}=y(x-1) \tag{6}
\end{equation*}
$$

where $a>1$ is a constant.

a

Determine the nontrivial equilibrium solution $\left(x^{\star}, y^{\star}\right) \neq(0,0)$. Use the Liapunov stability theorem to prove that $\left(x^{\star}, y^{\star}\right)$ is asymptotically stable. Provide a definition of "asymptotically stable" equilibrium solution.

Hint: Use

$$
V(x, y)=x-\ln x+y+C \ln y, \quad(x, y) \in O:=\{x>0, y>0\}
$$

with an appropriately chosen C, to construct a strict Liapunov function.

Answer: The nontrivial equilibrium solution is

$$
x^{\star}=1, \quad y^{\star}=1-\frac{1}{a}
$$

so that $\left(x^{\star}, y^{\star}\right)$ belongs to the region O. Let us define

$$
L(x, y):=V(x, y)-V\left(x^{\star}, y^{\star}\right)
$$

Below we justify the choice $C=\frac{1}{a}-1<0$. See Figure 9. Then

Figure 9: Problem 3-(a). Liapunov function $L(x, y)$ with $a=2$ and thus $C=-1 / 2$, which implies $\left(x^{\star}, y^{\star}\right)=(1,1 / 2)$.

$$
L\left(x^{\star}, y^{\star}\right)=0, \quad L(x, y)>0 \quad \forall(x, y) \neq\left(x^{\star}, y^{\star}\right)
$$

Set $F=(x(1-x / a-y), y(x-1))$, and let us compute

$$
\begin{aligned}
& \nabla L(x, y) \cdot F(x, y) \\
& \quad=(1-1 / x, 1+C / y) \cdot(x(1-x / a-y), y(x-1)) \\
& \quad=-\frac{1}{a}(x-1)(x-a-a C) \\
& \quad=-\frac{1}{a}(x-1)^{2} \leq 0 \quad(\text { if } C=1 / a-1)
\end{aligned}
$$

Hence, since (with $C=\frac{1}{a}-1$)

$$
\nabla L(x, y) \cdot F(x, y)<0, \quad(x, y) \in O \backslash\left\{\left(x^{\star}, y^{\star}\right)\right\}
$$

we can use the Liapunov stability theorem to conclude that $\left(x^{\star}, y^{\star}\right)$ is asymptotically stable. We recall that "asymptotically stable" means that X^{\star} is stable, cf. Problem 3-(f), and $\delta>0$ can be chosen such that

$$
\left|X_{0}-X^{\star}\right|<\delta \Longrightarrow \lim _{t \rightarrow \infty} X(t)=X^{\star}
$$

b
Consider the nonlinear system (6), and the nontrivial equilibrium solution $\left(x^{\star}, y^{\star}\right)$. Let $(x(t), y(t))$ be a T-periodic solution of (6). Prove that

$$
\langle x\rangle_{T}:=\frac{1}{T} \int_{0}^{T} x(t) d t=x^{\star}, \quad\langle y\rangle_{T}:=\frac{1}{T} \int_{0}^{T} y(t) d t=y^{\star} .
$$

Answer: Using (6), we obtain

$$
\frac{d}{d t} \ln x(t)=\frac{x^{\prime}(t)}{x(t)}=1-x / a-y
$$

and

$$
\frac{d}{d t} \ln y(t)=\frac{y^{\prime}(t)}{y(t)}=x(t)-1 .
$$

Let us compute the T-averages of these equations:

$$
\left\langle\frac{d}{d t} \ln x\right\rangle_{T}=1-\frac{1}{a}\langle x\rangle_{T}-\langle y\rangle_{T}
$$

and

$$
\left\langle\frac{d}{d t} \ln y\right\rangle_{T}=\langle x\rangle_{T}-1 .
$$

By the T-periodicity of $x(t)$ and $y(t)$,

$$
\left\langle\frac{d}{d t} \ln x\right\rangle_{T}=\frac{1}{T}(\ln x(T)-\ln x(0))=0
$$

and

$$
\left\langle\frac{d}{d t} \ln y\right\rangle_{T}=\frac{1}{T}(\ln y(T)-\ln y(0))=0 .
$$

Hence, $\langle x\rangle_{T}=1=x^{\star}$ and $\langle y\rangle_{T}=1-\frac{1}{a}=y^{\star}$.

