# UNIVERSITY OF OSLO <br> Faculty of mathematics and natural sciences 

Exam in: MAT3440 - Dynamical systems
Day of examination: Monday, June 14th, 2021
Examination hours: $09.00-13.00$
This problem set consists of 3 pages.
Appendices: None
Permitted aids: All aids are allowed.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

## Problem 1

## a

Consider the coefficient matrix

$$
A=\left(\begin{array}{ll}
2 & -5 \\
a & -2
\end{array}\right),
$$

which depends on a parameter $a \in \mathbb{R}$. Use trace-determinant analysis to determine the phase portrait-saddle, (spiral) sink, (spiral) source or center- of the linear system of differential equations $X^{\prime}=A X$.

Determine the general solution of $X^{\prime}=A X$ for $a=\frac{3}{5}$.

## b

Consider the nonlinear system

$$
\begin{aligned}
& x^{\prime}=-x+x^{2}+y-y^{2}, \\
& y^{\prime}=2 x+x y .
\end{aligned}
$$

Determine the (four) equilibrium solutions. Use the linearization method to determine the phase portrait near each equilibrium solution.

## c

Consider the nonlinear differential equation

$$
x^{\prime}=f_{r}(x):=x(x-2)+r,
$$

where $r$ is a parameter. Determine the equilibrium solutions and classify their stability (source / sink). Plot slope lines and a bifurcation diagram.

## Problem 2

## a

Consider the nonlinear system

$$
x^{\prime}=-y^{3}, \quad y^{\prime}=x^{3}
$$

Verify that $(0,0)$ is a non-hyperbolic equilibrium point. Plot the corresponding phase portrait. Use the Liapunov stability theorem to prove that $(0,0)$ is stable. Plot your Liapunov function.

## b

Consider the nonlinear system

$$
x^{\prime}=-2 y+y z, \quad y^{\prime}=x-x z, \quad z^{\prime}=x y
$$

Verify that the origin $(x, y, z)=(0,0,0)$ is a non-hyperbolic equilibrium point. Employ the Liapunov stability method to show that the origin is stable. Hint: Try to construct a Liapunov function of the form

$$
L(x, y, z)=a x^{2}+b y^{2}+c z^{2}
$$

for some suitable coefficients $a, b, c \in \mathbb{R}$.

## c

Consider the second-order differential equation

$$
\begin{equation*}
x^{\prime \prime}+f(x) x^{\prime}+g(x)=0 \tag{1}
\end{equation*}
$$

which arises in numerous models in physics, chemistry, and biology. In its mechanical interpretation the equation models the movement of a mass subjected to a damping force $-f(x) x^{\prime}$ and a restoring force $-g(x)$, where $f, g$ are given continuously differentiable functions. In what follows, define

$$
F(x)=\int_{0}^{x} f(z) d z, \quad G(x)=\int_{0}^{x} g(z) d z
$$

(i) Argue that (1) can be written as the following system of first order differential equations:

$$
\begin{equation*}
x^{\prime}=y-F(x), \quad y^{\prime}=-g(x) \tag{2}
\end{equation*}
$$

Suppose $G(x)>0$ for all $x \neq 0$. We call the quantity

$$
E(t):=G(x(t))+\frac{1}{2} y^{2}(t)
$$

the total energy of the system at time $t$, which consists of potential energy $G(x(t))$ and kinetic energy $\frac{1}{2} y^{2}(t)$.
(ii) Suppose $g(x) F(x)>0$ for all $x \neq 0$. Under this assumption, prove that the total energy is strictly decreasing in time $t$.

## d

Show that $(x, y)=(0,0)$ is an asymptotically stable equilibrium solution of (2), under the same assumptions as in Problem 2c and also $g(0)=0$.

## Problem 3

## a

Let $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be two continuously differentiable functions, and introduce the vector field $F(x, y)=(f(x, y), g(x, y))$. Consider the system of differential equations

$$
x^{\prime}=f(x, y), \quad y^{\prime}=g(x, y)
$$

Prove that this is a Hamiltonian system if and only if $\operatorname{div} F=0$, where div denotes the divergence of the vector field $F$ with respect to $x, y$.

## b

Consider the Hamiltonian system

$$
\begin{equation*}
x^{\prime}=H_{y}(x, y), \quad y^{\prime}=-H_{x}(x, y) \tag{3}
\end{equation*}
$$

where the Hamiltonian function $H=H(x, y): \mathbb{R}^{2} \rightarrow \mathbb{R}$ is twice continuously differentiable, and $H_{x}=\frac{\partial H}{\partial x}$ and $H_{y}=\frac{\partial H}{\partial y}$ denote the partial derivatives of $H$ with respect to $x$ and $y$, respectively. Suppose $(x, y)=(0,0)$ is an equilibrium solution of (3), and that

$$
\begin{equation*}
H_{x x}(0,0) H_{y y}(0,0)-\left(H_{x y}(0,0)\right)^{2}>0 \tag{4}
\end{equation*}
$$

Prove that the equilibrium solution $(0,0)$ is a center of the linearized system.

## c

Consider the nonlinear system

$$
x^{\prime}=y+x^{2}-y^{2}, \quad y^{\prime}=-x-2 x y
$$

Explain why this is a Hamiltonian system. Plot the phase portrait. Prove that the equilibrium solution $(x, y)=(0,0)$ is a center of the linearized system.

