UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in: MAT3440 — Dynamical systems
Day of examination: Monday, June 14th, 2021
Examination hours:  09.00—-13.00

This problem set consists of 8 pages.

Appendices: None

Permitted aids: All aids are allowed.

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Problem 1

a

Consider the coeflicient matrix

2 =5
A=
<a _2> ’
which depends on a parameter a € R. Use trace-determinant analysis

to determine the phase portrait—saddle, (spiral) sink, (spiral) source or
center—of the linear system of differential equations X’ = AX.

Determine the general solution of X’ = AX for a = %
Answer: The trace is T = 0, the determinant is D = —4 + 5a, and the
discriminant is 72 — 4D = 4 — 5a. The matrix A has complex eigenvalues

if 72 —4D < 0 <= 4—5a < 0 <= a > 3. Since T = 0, we have in

this case that the phase portrait is a center. We have real eigenvalues if
T?—4D >0<=4—-5a>0<=a < %. Since D < 0, in this case the phase

portrait is a saddle.

T-4p < 0: (Complex elqenualves)
1, T<0 =P seiral nink

2. T>0 = spiral source

3, T=o0 => C(Center
T*-4020 : (real tigenvaliier)
1, 0<o = saddle

(readd Aady = D <0 =P ouc neg,
and one pad. HM)MI?»(U!.) el

2. O>0and T<o =b $ink
(recall Ax =L (T 2VT-40 )¢o0)

3, 0Y0 and T>0 =P Source
(wecall As= 4 (T2VT-90)>0)

(Continued on page 2.)
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Finally, if a = %, then the determinant D = 0. In this case, the (repeated)

2 -5
=i )
2 -2

is A = 0. Let us determine the phase portrait in this case. Adding —2
times the first differential equation to 5 times the second equation gives
—22'(t) + 5y'(t) = 0, so that in the xy-plane the solution curves are given
by % = —%, which implies that they are straight lines given by y = %x +C,
for any constant C.

Ifa= %, then the resulting matrix

2 -5
()
3 -2

has eigenvalues Ay = £1. The corresponding eigenvectors are V_ = (

eigenvalues of

= wlot
N—

and V, = <?> This gives the generalized solution

5., —t t
2 + Hege
Aty Att 3C1€
X(t) =c1e™ Vo + eV, = cret + cpet )

for any c¢1,co € R.
b

Consider the nonlinear system

o = —z4 2t +y -y
y = 2x + xy.

Determine the (four) equilibrium solutions. Use the linearization method to
determine the phase portrait near each equilibrium solution.

Answer: The equilibrium points, i.e., the solutions of
—r+a4+y—y*=0, 2z+axy=0,

are

(-2,-2), (0,0), (0,1), (3,-2).

Set
F(z,y) = (—x+y+x2—y2,2x+$y).

The Jacobian matrix is

J(z,y) == DF(z,y) = (

J(—2,-2) = (_05 :g) .

20 -1 1-2y
y+2 x '

(z,y) = (=2, -2):

(Continued on page 3.)
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The determinant is D = 10 > 0, the trace is T' = —7 < 0, and the
discriminant is 72 — 4D = 9 > 0. Hence (-2, —2) is a sink.

(z,y) = (0,0):
J(0,0) = <_21 (1)) .

The determinant is D = —2 < 0. Hence (0,0) is a saddle.

(z,y) = (0,1):
J(0,1) = <_31 _01) .

The determinant is D = 3 > 0, the traceis T' = —1 < 0, and the discriminant
is T? — 4D = —11 < 0. Hence (0, 1) is a spiral sink.

(z,y) = (3,-2):
J(3,-2) = <g 2)

The determinant is D = 15 > 0, the trace is T' = 8 > 0, and the discriminant
is T? — 4D = 4 > 0. Hence (3, —2) is a source.

C

Consider the nonlinear differential equation
v = fr(x) = x(x—2)+r,

where r is a parameter. Determine the equilibrium solutions and classify
their stability (source / sink). Plot slope lines and a bifurcation diagram.

Answer: The equilibrium points satisfy 2 — 2z 4+ r = 0 and are thus

le:l:m;

we have two equilibrium points (z = 1+ +/1—r) when r < 1 and one
equilibrium point (z = 1) when r = 1. We compute f/(z) = 2(x —1), and so

fil+V1I-r)=2V/1-r>0,
ffl—=vV1i—r)=-2V/1-r<0,

for r < 1. As a result, + = 14 /1 —r is a source (unstable) and
x =1—+/1—ris a sink (stable). Moreover, f/(1) = 0 so z = 1 (with
r = 1) is a non-hyperbolic equilibrium point.

As 7 increases to 1, we go from two equilibrium points (r < 1) to one
equilibrium point (r = 1). In other words, = 1 is a saddle-node bifurcation.

Problem 2

a

Consider the nonlinear system

(Continued on page 4.)
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Ar{X)

— r=0.5
r=1
r=1.5

1+4/1-r/r>05

1-4/1-r/r-05

Figure 1: Problem lc. Plot of f.(z) (top). Plot of slope lines (bottom left)
for r = 3. Bifurcation plot (bottom right)—blue (z = 1++/T — ) and yellow
(xr=1—-+1-r).

Verify that (0,0) is a mnon-hyperbolic equilibrium point. Plot the
corresponding phase portrait. Use the Liapunov stability theorem to prove
that (0,0) is stable. Plot your Liapunov function.

—y3 0 —3y2
Answer: Set F(z,y) = 23 Then DF(z,y) = a2 0 ) and so

DF(0,0) becomes the zero matrix. This verifies that the origin is a non-
hyperbolic equilibrium point. A possible Liapunov function is

L(z,y) = z* + y*.
Then L(0,0) =0 and L(z,y) > 0 for all (x,y) # (0,0). Moreover,
= (4953, 4y3) . (—y3, x?’) = —4x3y3 + 4323 = 0.

In other words, L is constant along solutions of the system of differential
equations: %L(m(t), y(t)) = 0. The Liapunov stability theorem then implies
that (0,0) is stable.

b

Consider the nonlinear system

/

¥ =2+yz, v=x-—2z, 2 =uy.

Verify that the origin (z,y,z) = (0,0,0) is a non-hyperbolic equilibrium
point. Employ the Liapunov stability method to show that the origin is

(Continued on page 5.)
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-0.5

Figure 2: Problem 2a. Phase portrait (left) and Liapunov function L (right).

stable. Hint: Try to construct a Liapunov function of the form
L(z,y, z) = az® + by* + ¢z,

for some suitable coefficients a, b, c € R.

Answer: Set
-2y +yz
F(z,y,z)=| x—xz
Ty
Clearly, F'(0,0,0) = 0. Let us compute the Jacobian

0 242z vy

J(:U,y,z):DF(x,y,z): -2 0 —Z |,
Y x 0
0 -2 0
and so J(0,0,0) =11 0 0]. The eigenvalues of this matrix, which are
0 0 O

0, =+iv2,

have zero real part. Thus, (0,0,0) is non-hyperbolic. Regarding the
Liapunov function, let us compute

L(z,y,z) = DL(z,y,2) - F(z,y,2)
= (2ax,2by,2cz) - (—2y + yz,x — vz, 2Y)
= —daxy + 2axyz + 2bxy — 2bxyz + 2cxyz
= (—4a + 2b) xy + (2a — 2b + 2¢) xyz.
Let us pick a, b, ¢ such that
—4da+2b=0<«= b= 2a,
204 —2b+4+2c=0<= c=a.
Let us take a =1, b =2 and ¢ = 1. Then L becomes
L(z,y,z) = 22 + 2% + 22

It is immediately clear that L(0,0,0) = 0 and L(z,y,z) > 0 for all
(z,y,2) # (0,0,0). Moreover, L(0,0,0) = 0. Therefore, by the Liapunov
stability theorem, (0,0,0) is a stable equilibrium point.

(Continued on page 6.)
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C

Consider the second-order differential equation
o’ + f(z)a’ + g(z) =0, (1)

which arises in numerous models in physics, chemistry, and biology. In
its mechanical interpretation the equation models the movement of a mass
subjected to a damping force —f(x)z’ and a restoring force —g(z), where
f, g are given continuously differentiable functions. In what follows, define

Pla) = /0 i) e Gla) = /O " o(2) de.

(i) Argue that (1) can be written as the following system of first order
differential equations:

o =y—F(zx), y =-g(x) (2)

Suppose G(x) > 0 for all x # 0. We call the quantity

1
B(t) = Gla(t) + 55*(1)
the total energy of the system at time ¢, which consists of potential energy
G(z(t)) and kinetic energy 2y2(t).
(ii) Suppose g(x)F(x) > 0 for all z # 0. Under this assumption, prove
that the total energy is strictly decreasing in time .

Answer: (i) Let x(t) and y(t) solve (2). Using the chain rule, differentiating
x' gives

" =y — F'(z)2’ = —g(x) — f(2)2,
which shows that z solves (1).

(ii) Multiply the first equation in (2) by g(z) and the second equation by
y. Adding the resulting equations supplies

g(x)x’ +yy' = g(x)y — g(x)F(x) — yg(x) = —g(z)F ().

By the chain rule (applied to the left-hand side) and the definition of G,

i (6604 370 = ~s(eO)Fa(0).

In other words,
d

B = —g(z(®))F(x(t)) <0,

by our assumption. This shows that the total energy E(t) is strictly
decreasing in ¢.

(Continued on page 7.)
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d
Show that (x,y) = (0,0) is an asymptotically stable equilibrium solution of

(2), under the same assumptions as in Problem 2c and also ¢(0) = 0.

Answer: Making use of the fact that F(0) = ¢(0) = 0, we see that
(z,y) = (0,0) is an equilibrium solution of (2). The simplest approach
to studying the stability of (0,0) consists in applying the Liapunov stability
theorem. Motivated by Problem 2c, set

L(z,y) = Gla) + 597,

Then L(0,0) =0 and L(z,y) > 0 for all (z,y) # 0, since G(x) > 0 Vx # 0.
Besides,

L(z,y) = DL(z,y) - (y — F(z),—g(x))
= (9(2),y) - (y — F(x), —g(z))
= g(x)y — g(x)F () — yg(z) = —g(x)F(z) <0,

as long as = # 0, since g(x)F(x) is assumed to be strictly positive for = # 0.
Hence, L is a Liapunov function and the claim follows from the Liapunov
stability theorem.

Problem 3

a

Let f,g : R? — R be two continuously differentiable functions, and
introduce the vector field F(z,y) = (f(z,y),9(z,y)). Consider the system
of differential equations

= flz,y), v =g(z,y).

Prove that this is a Hamiltonian system if and only if div F' = 0, where div
denotes the divergence of the vector field F' with respect to z, y.

Answer: The system of differential equations is a Hamiltonian system <=
J‘J:Hy(xvy)v y/:_HZB(xay)v

for some function H = H(z,y) : R? — R. In other words, H must satisfy
the equations H, = f and H, = —g. Since H,, = H,, these equations
imply that f, = —g, or divF = f; + g, = 0.

b

Consider the Hamiltonian system

¥ = Hy(z,y), v =—Hy(x,y), (3)

where the Hamiltonian function H = H(z,y) : R?> — R is twice continuously
differentiable, and H, = %—Iaf and H, = %—IZ denote the partial derivatives

(Continued on page 8.)
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of H with respect to z and y, respectively. Suppose (x,y) = (0,0) is an
equilibrium solution of (3), and that

H(0,0) Hyy (0,0) — (Hagy(0,0))* > 0. (4)
Prove that the equilibrium solution (0, 0) is a center of the linearized system.
. T H, . .
Answer: With X = y and F(X) = _ g s We can write (3) in the form
X' = F(X).
The linearized system is
X' =AX, A= DF(0).

We compute

. Hm((),()) H (0,0)
A= (-ﬁm(ojo) —ﬁzy(o,0)> :

Since Hy; = H,y, the trace is T'= 0. The determinant is
D = — (Hyy(0,0))* + Hyy(0,0)H,, (0,0).
Given (4), it follows that D > 0. Finally, the discriminant is
T? — 4D = —4D < 0.

Hence (0,0) is a center.

C

Consider the nonlinear system
¢ =y+a22—y? y =—x— 2.

Explain why this is a Hamiltonian system. Plot the phase portrait. Prove
that the equilibrium solution (z,y) = (0,0) is a center of the linearized
system.

Answer: Set F(x,y) = (y + 2% -9 -z — Qxy), and compute
div F(z,y) = 2z — 2z = 0.

The Hamiltonian structure then follows from Problem 3a. The Hamiltonian
function is determined by the equations

Hy:y—l—az2—y2, —-H, = —z — 2zy.
A corresponding Hamiltonian function H is

H(z,y) = %IZ + %y2 - %y‘? + 2%y.
In view of Problem 3b, we compute
Hyp =142y, Hy,=1-2y, H; =2c

—  HyHy, — (Hyy)? =1 — 422 — 4y

therefore

H,(0,0)Hyy (0,0) — (Hyy(0,0))* = 1> 0.
This proves that the origin is a center, thanks to Problem 3b.

THE END
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A

Figure 3: Problem 3c. Phase portrait.

(Continued on page 10.)



