UNIVERSITY OF OSLO
 Faculty of mathematics and natural sciences

Exam in: MAT3440 - Dynamical systems
Day of examination: Monday, June 14th, 2021
Examination hours: $09.00-13.00$
This problem set consists of 8 pages.
Appendices: None
Permitted aids: All aids are allowed.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

a

Consider the coefficient matrix

$$
A=\left(\begin{array}{ll}
2 & -5 \\
a & -2
\end{array}\right),
$$

which depends on a parameter $a \in \mathbb{R}$. Use trace-determinant analysis to determine the phase portrait-saddle, (spiral) sink, (spiral) source or center- of the linear system of differential equations $X^{\prime}=A X$.

Determine the general solution of $X^{\prime}=A X$ for $a=\frac{3}{5}$.

Answer: The trace is $T=0$, the determinant is $D=-4+5 a$, and the discriminant is $T^{2}-4 D=4-5 a$. The matrix A has complex eigenvalues if $T^{2}-4 D<0 \Longleftrightarrow 4-5 a<0 \Longleftrightarrow a>\frac{4}{5}$. Since $T=0$, we have in this case that the phase portrait is a center. We have real eigenvalues if $T^{2}-4 D>0 \Longleftrightarrow 4-5 a>0 \Longleftrightarrow a<\frac{4}{5}$. Since $D<0$, in this case the phase portrait is a saddle.

```
T
1. T<0 Spiral sink
2. T>0 spiral source
3. T=0 位ter
T
1. 0<0 saddle
    Greall }\mp@subsup{\lambda}{-}{}\mp@subsup{\lambda}{+}{}=0<0=>\mathrm{ one neg.
    and one pos. eigenvalue)
2. 0>0 and T<0 Sink
(recall }\lambda\pm=\frac{1}{2}(T\pm\sqrt{}{\mp@subsup{T}{}{2}-40})<0
3. 0>0 and T>0 }=>\mathrm{ Source
(recall }\mp@subsup{\lambda}{\pm}{}=\frac{1}{2}(T\pm\sqrt{}{\mp@subsup{T}{}{2}-40})>0
```

Finally, if $a=\frac{4}{5}$, then the determinant $D=0$. In this case, the (repeated) eigenvalues of

$$
A=\left(\begin{array}{ll}
2 & -5 \\
\frac{4}{5} & -2
\end{array}\right)
$$

is $\lambda=0$. Let us determine the phase portrait in this case. Adding -2 times the first differential equation to 5 times the second equation gives $-2 x^{\prime}(t)+5 y^{\prime}(t)=0$, so that in the $x y$-plane the solution curves are given by $\frac{d y}{d x}=-\frac{2}{5}$, which implies that they are straight lines given by $y=\frac{2}{5} x+C$, for any constant C.

If $a=\frac{3}{5}$, then the resulting matrix

$$
A=\left(\begin{array}{ll}
2 & -5 \\
\frac{3}{5} & -2
\end{array}\right)
$$

has eigenvalues $\lambda_{ \pm}= \pm 1$. The corresponding eigenvectors are $V_{-}=\binom{\frac{5}{3}}{1}$ and $V_{+}=\binom{5}{1}$. This gives the generalized solution

$$
X(t)=c_{1} e^{\lambda_{-} t} V_{-}+c_{2} e^{\lambda_{+} t} V_{+}=\binom{\frac{5}{3} c_{1} e^{-t}+5 c_{2} e^{t}}{c_{1} e^{-t}+c_{2} e^{t}}
$$

for any $c_{1}, c_{2} \in \mathbb{R}$.

b

Consider the nonlinear system

$$
\begin{aligned}
x^{\prime} & =-x+x^{2}+y-y^{2} \\
y^{\prime} & =2 x+x y
\end{aligned}
$$

Determine the (four) equilibrium solutions. Use the linearization method to determine the phase portrait near each equilibrium solution.

Answer: The equilibrium points, i.e., the solutions of

$$
-x+x^{2}+y-y^{2}=0, \quad 2 x+x y=0
$$

are

$$
(-2,-2), \quad(0,0), \quad(0,1), \quad(3,-2)
$$

Set

$$
F(x, y)=\left(-x+y+x^{2}-y^{2}, 2 x+x y\right)
$$

The Jacobian matrix is

$$
J(x, y):=D F(x, y)=\left(\begin{array}{cc}
2 x-1 & 1-2 y \\
y+2 & x
\end{array}\right)
$$

$\underline{(x, y)=(-2,-2):}$

$$
J(-2,-2)=\left(\begin{array}{cc}
-5 & -5 \\
0 & -2
\end{array}\right)
$$

(Continued on page 3.)

The determinant is $D=10>0$, the trace is $T=-7<0$, and the discriminant is $T^{2}-4 D=9>0$. Hence $(-2,-2)$ is a sink.
$\underline{(x, y)=(0,0):}$

$$
J(0,0)=\left(\begin{array}{cc}
-1 & 1 \\
2 & 0
\end{array}\right)
$$

The determinant is $D=-2<0$. Hence $(0,0)$ is a saddle.
$\underline{(x, y)}=(0,1):$

$$
J(0,1)=\left(\begin{array}{cc}
-1 & -1 \\
3 & 0
\end{array}\right)
$$

The determinant is $D=3>0$, the trace is $T=-1<0$, and the discriminant is $T^{2}-4 D=-11<0$. Hence $(0,1)$ is a spiral sink.
$(x, y)=(3,-2):$

$$
J(3,-2)=\left(\begin{array}{ll}
5 & 5 \\
0 & 3
\end{array}\right)
$$

The determinant is $D=15>0$, the trace is $T=8>0$, and the discriminant is $T^{2}-4 D=4>0$. Hence $(3,-2)$ is a source.

c

Consider the nonlinear differential equation

$$
x^{\prime}=f_{r}(x):=x(x-2)+r,
$$

where r is a parameter. Determine the equilibrium solutions and classify their stability (source / sink). Plot slope lines and a bifurcation diagram.

Answer: The equilibrium points satisfy $x^{2}-2 x+r=0$ and are thus

$$
x=1 \pm \sqrt{1-r}
$$

we have two equilibrium points $(x=1 \pm \sqrt{1-r})$ when $r<1$ and one equilibrium point $(x=1)$ when $r=1$. We compute $f_{r}^{\prime}(x)=2(x-1)$, and so

$$
\begin{aligned}
& f_{r}^{\prime}(1+\sqrt{1-r})=2 \sqrt{1-r}>0 \\
& f_{r}^{\prime}(1-\sqrt{1-r})=-2 \sqrt{1-r}<0
\end{aligned}
$$

for $r<1$. As a result, $x=1+\sqrt{1-r}$ is a source (unstable) and $x=1-\sqrt{1-r}$ is a sink (stable). Moreover, $f_{r}^{\prime}(1)=0$ so $x=1$ (with $r=1$) is a non-hyperbolic equilibrium point.

As r increases to 1 , we go from two equilibrium points $(r<1)$ to one equilibrium point $(r=1)$. In other words, $r=1$ is a saddle-node bifurcation.

Problem 2

a

Consider the nonlinear system

$$
x^{\prime}=-y^{3}, \quad y^{\prime}=x^{3}
$$

(Continued on page 4.)

Figure 1: Problem 1c. Plot of $f_{r}(x)$ (top). Plot of slope lines (bottom left) for $r=\frac{1}{2}$. Bifurcation plot (bottom right)—blue $(x=1+\sqrt{1-r})$ and yellow $(x=1-\sqrt{1-r})$.

Verify that $(0,0)$ is a non-hyperbolic equilibrium point. Plot the corresponding phase portrait. Use the Liapunov stability theorem to prove that $(0,0)$ is stable. Plot your Liapunov function.

Answer: Set $F(x, y)=\binom{-y^{3}}{x^{3}}$. Then $D F(x, y)=\left(\begin{array}{cc}0 & -3 y^{2} \\ 3 x^{2} & 0\end{array}\right)$, and so $\operatorname{DF}(0,0)$ becomes the zero matrix. This verifies that the origin is a nonhyperbolic equilibrium point. A possible Liapunov function is

$$
L(x, y)=x^{4}+y^{4}
$$

Then $L(0,0)=0$ and $L(x, y)>0$ for all $(x, y) \neq(0,0)$. Moreover,

$$
\begin{aligned}
\dot{L}(x, y) & =D L(x, y) \cdot F(x, y) \\
& =\left(4 x^{3}, 4 y^{3}\right) \cdot\left(-y^{3}, x^{3}\right)=-4 x^{3} y^{3}+4 y^{3} x^{3}=0 .
\end{aligned}
$$

In other words, L is constant along solutions of the system of differential equations: $\frac{d}{d t} L(x(t), y(t))=0$. The Liapunov stability theorem then implies that $(0,0)$ is stable.

b

Consider the nonlinear system

$$
x^{\prime}=-2 y+y z, \quad y^{\prime}=x-x z, \quad z^{\prime}=x y .
$$

Verify that the origin $(x, y, z)=(0,0,0)$ is a non-hyperbolic equilibrium point. Employ the Liapunov stability method to show that the origin is

Figure 2: Problem 2a. Phase portrait (left) and Liapunov function L (right).
stable. Hint: Try to construct a Liapunov function of the form

$$
L(x, y, z)=a x^{2}+b y^{2}+c z^{2},
$$

for some suitable coefficients $a, b, c \in \mathbb{R}$.
Answer: Set

$$
F(x, y, z)=\left(\begin{array}{c}
-2 y+y z \\
x-x z \\
x y
\end{array}\right) .
$$

Clearly, $F(0,0,0)=0$. Let us compute the Jacobian

$$
J(x, y, z)=D F(x, y, z)=\left(\begin{array}{ccc}
0 & -2+z & y \\
1-z & 0 & -x \\
y & x & 0
\end{array}\right),
$$

and so $J(0,0,0)=\left(\begin{array}{ccc}0 & -2 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$. The eigenvalues of this matrix, which are

$$
0, \quad \pm i \sqrt{2}
$$

have zero real part. Thus, $(0,0,0)$ is non-hyperbolic. Regarding the Liapunov function, let us compute

$$
\begin{aligned}
\dot{L}(x, y, z) & =D L(x, y, z) \cdot F(x, y, z) \\
& =(2 a x, 2 b y, 2 c z) \cdot(-2 y+y z, x-x z, x y) \\
& =-4 a x y+2 a x y z+2 b x y-2 b x y z+2 c x y z \\
& =(-4 a+2 b) x y+(2 a-2 b+2 c) x y z .
\end{aligned}
$$

Let us pick a, b, c such that

$$
\begin{aligned}
& -4 a+2 b=0 \Longleftrightarrow b=2 a, \\
& 2 a-2 b+2 c=0 \Longleftrightarrow c=a .
\end{aligned}
$$

Let us take $a=1, b=2$ and $c=1$. Then L becomes

$$
L(x, y, z)=x^{2}+2 y^{2}+z^{2} .
$$

It is immediately clear that $L(0,0,0)=0$ and $L(x, y, z)>0$ for all $(x, y, z) \neq(0,0,0)$. Moreover, $\dot{L}(0,0,0)=0$. Therefore, by the Liapunov stability theorem, $(0,0,0)$ is a stable equilibrium point.
(Continued on page 6.)

c

Consider the second-order differential equation

$$
\begin{equation*}
x^{\prime \prime}+f(x) x^{\prime}+g(x)=0 \tag{1}
\end{equation*}
$$

which arises in numerous models in physics, chemistry, and biology. In its mechanical interpretation the equation models the movement of a mass subjected to a damping force $-f(x) x^{\prime}$ and a restoring force $-g(x)$, where f, g are given continuously differentiable functions. In what follows, define

$$
F(x)=\int_{0}^{x} f(z) d z, \quad G(x)=\int_{0}^{x} g(z) d z
$$

(i) Argue that (1) can be written as the following system of first order differential equations:

$$
\begin{equation*}
x^{\prime}=y-F(x), \quad y^{\prime}=-g(x) \tag{2}
\end{equation*}
$$

Suppose $G(x)>0$ for all $x \neq 0$. We call the quantity

$$
E(t):=G(x(t))+\frac{1}{2} y^{2}(t)
$$

the total energy of the system at time t, which consists of potential energy $G(x(t))$ and kinetic energy $\frac{1}{2} y^{2}(t)$.
(ii) Suppose $g(x) F(x)>0$ for all $x \neq 0$. Under this assumption, prove that the total energy is strictly decreasing in time t.

Answer: (i) Let $x(t)$ and $y(t)$ solve (2). Using the chain rule, differentiating x^{\prime} gives

$$
x^{\prime \prime}=y^{\prime}-F^{\prime}(x) x^{\prime}=-g(x)-f(x) x^{\prime}
$$

which shows that x solves (1).
(ii) Multiply the first equation in (2) by $g(x)$ and the second equation by y. Adding the resulting equations supplies

$$
g(x) x^{\prime}+y y^{\prime}=g(x) y-g(x) F(x)-y g(x)=-g(x) F(x)
$$

By the chain rule (applied to the left-hand side) and the definition of G,

$$
\frac{d}{d t}\left(G(x(t))+\frac{1}{2} y^{2}(t)\right)=-g(x(t)) F(x(t))
$$

In other words,

$$
\frac{d}{d t} E(t)=-g(x(t)) F(x(t))<0
$$

by our assumption. This shows that the total energy $E(t)$ is strictly decreasing in t.

d

Show that $(x, y)=(0,0)$ is an asymptotically stable equilibrium solution of (2), under the same assumptions as in Problem 2c and also $g(0)=0$.

Answer: Making use of the fact that $F(0)=g(0)=0$, we see that $(x, y)=(0,0)$ is an equilibrium solution of (2). The simplest approach to studying the stability of $(0,0)$ consists in applying the Liapunov stability theorem. Motivated by Problem 2c, set

$$
L(x, y)=G(x)+\frac{1}{2} y^{2}
$$

Then $L(0,0)=0$ and $L(x, y)>0$ for all $(x, y) \neq 0$, since $G(x)>0 \forall x \neq 0$. Besides,

$$
\begin{aligned}
\dot{L}(x, y) & =D L(x, y) \cdot(y-F(x),-g(x)) \\
& =(g(x), y) \cdot(y-F(x),-g(x)) \\
& =g(x) y-g(x) F(x)-y g(x)=-g(x) F(x)<0
\end{aligned}
$$

as long as $x \neq 0$, since $g(x) F(x)$ is assumed to be strictly positive for $x \neq 0$. Hence, L is a Liapunov function and the claim follows from the Liapunov stability theorem.

Problem 3

a

Let $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be two continuously differentiable functions, and introduce the vector field $F(x, y)=(f(x, y), g(x, y))$. Consider the system of differential equations

$$
x^{\prime}=f(x, y), \quad y^{\prime}=g(x, y)
$$

Prove that this is a Hamiltonian system if and only if $\operatorname{div} F=0$, where div denotes the divergence of the vector field F with respect to x, y.

Answer: The system of differential equations is a Hamiltonian system \Longleftrightarrow

$$
x^{\prime}=H_{y}(x, y), \quad y^{\prime}=-H_{x}(x, y)
$$

for some function $H=H(x, y): \mathbb{R}^{2} \rightarrow \mathbb{R}$. In other words, H must satisfy the equations $H_{y}=f$ and $H_{x}=-g$. Since $H_{y x}=H_{x y}$, these equations imply that $f_{x}=-g_{y}$ or $\operatorname{div} F=f_{x}+g_{y}=0$.

b

Consider the Hamiltonian system

$$
\begin{equation*}
x^{\prime}=H_{y}(x, y), \quad y^{\prime}=-H_{x}(x, y) \tag{3}
\end{equation*}
$$

where the Hamiltonian function $H=H(x, y): \mathbb{R}^{2} \rightarrow \mathbb{R}$ is twice continuously differentiable, and $H_{x}=\frac{\partial H}{\partial x}$ and $H_{y}=\frac{\partial H}{\partial y}$ denote the partial derivatives
of H with respect to x and y, respectively. Suppose $(x, y)=(0,0)$ is an equilibrium solution of (3), and that

$$
\begin{equation*}
H_{x x}(0,0) H_{y y}(0,0)-\left(H_{x y}(0,0)\right)^{2}>0 \tag{4}
\end{equation*}
$$

Prove that the equilibrium solution $(0,0)$ is a center of the linearized system.
Answer: With $X=\binom{x}{y}$ and $F(X)=\binom{H_{y}}{-H_{x}}$, we can write (3) in the form

$$
X^{\prime}=F(X)
$$

The linearized system is

$$
X^{\prime}=A X, \quad A=D F(0)
$$

We compute

$$
A=\left(\begin{array}{cc}
H_{y x}(0,0) & H_{y y}(0,0) \\
-H_{x x}(0,0) & -H_{x y}(0,0)
\end{array}\right) .
$$

Since $H_{y x}=H_{x y}$, the trace is $T=0$. The determinant is

$$
D=-\left(H_{x y}(0,0)\right)^{2}+H_{x x}(0,0) H_{y y}(0,0)
$$

Given (4), it follows that $D>0$. Finally, the discriminant is

$$
T^{2}-4 D=-4 D<0
$$

Hence $(0,0)$ is a center.

c

Consider the nonlinear system

$$
x^{\prime}=y+x^{2}-y^{2}, \quad y^{\prime}=-x-2 x y
$$

Explain why this is a Hamiltonian system. Plot the phase portrait. Prove that the equilibrium solution $(x, y)=(0,0)$ is a center of the linearized system.

Answer: Set $F(x, y)=\left(y+x^{2}-y^{2},-x-2 x y\right)$, and compute

$$
\operatorname{div} F(x, y)=2 x-2 x=0
$$

The Hamiltonian structure then follows from Problem 3a. The Hamiltonian function is determined by the equations

$$
H_{y}=y+x^{2}-y^{2}, \quad-H_{x}=-x-2 x y
$$

A corresponding Hamiltonian function H is

$$
H(x, y)=\frac{1}{2} x^{2}+\frac{1}{2} y^{2}-\frac{1}{3} y^{3}+x^{2} y
$$

In view of Problem 3b, we compute

$$
\begin{aligned}
& H_{x x}=1+2 y, \quad H_{y y}=1-2 y, \quad H_{x y}=2 x \\
& \quad \Longrightarrow \quad H_{x x} H_{y y}-\left(H_{x y}\right)^{2}=1-4 x^{2}-4 y^{2}
\end{aligned}
$$

therefore

$$
H_{x x}(0,0) H_{y y}(0,0)-\left(H_{x y}(0,0)\right)^{2}=1>0
$$

This proves that the origin is a center, thanks to Problem 3b.

Figure 3: Problem 3c. Phase portrait.

