
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Exam in: MAT3440 –– Dynamical systems

Day of examination: Monday, June 14th, 2021

Examination hours: 09.00 – 13.00

This problem set consists of 8 pages.

Appendices: None

Permitted aids: All aids are allowed.

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Problem 1

a

Consider the coefficient matrix

A =

(
2 −5
a −2

)
,

which depends on a parameter a ∈ R. Use trace-determinant analysis
to determine the phase portrait—saddle, (spiral) sink, (spiral) source or
center—of the linear system of differential equations X ′ = AX.

Determine the general solution of X ′ = AX for a = 3
5 .

Answer: The trace is T = 0, the determinant is D = −4 + 5a, and the
discriminant is T 2 − 4D = 4 − 5a. The matrix A has complex eigenvalues
if T 2 − 4D < 0 ⇐⇒ 4 − 5a < 0 ⇐⇒ a > 4

5 . Since T = 0, we have in
this case that the phase portrait is a center. We have real eigenvalues if
T 2− 4D > 0⇐⇒ 4− 5a > 0⇐⇒ a < 4

5 . Since D < 0, in this case the phase
portrait is a saddle.

(Continued on page 2.)
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Finally, if a = 4
5 , then the determinantD = 0. In this case, the (repeated)

eigenvalues of

A =

(
2 −5
4
5 −2

)
is λ = 0. Let us determine the phase portrait in this case. Adding −2
times the first differential equation to 5 times the second equation gives
−2x′(t) + 5y′(t) = 0, so that in the xy-plane the solution curves are given
by dy

dx = −2
5 , which implies that they are straight lines given by y = 2

5x+C,
for any constant C.

If a = 3
5 , then the resulting matrix

A =

(
2 −5
3
5 −2

)

has eigenvalues λ± = ±1. The corresponding eigenvectors are V− =

(
5
3
1

)
and V+ =

(
5
1

)
. This gives the generalized solution

X(t) = c1e
λ−tV− + c2e

λ+tV+ =

(
5
3c1e

−t + 5c2e
t

c1e
−t + c2e

t

)
,

for any c1, c2 ∈ R.

b

Consider the nonlinear system

x′ = −x+ x2 + y − y2,
y′ = 2x+ xy.

Determine the (four) equilibrium solutions. Use the linearization method to
determine the phase portrait near each equilibrium solution.

Answer: The equilibrium points, i.e., the solutions of

−x+ x2 + y − y2 = 0, 2x+ xy = 0,

are
(−2,−2), (0, 0), (0, 1), (3,−2).

Set
F (x, y) =

(
−x+ y + x2 − y2, 2x+ xy

)
.

The Jacobian matrix is

J(x, y) := DF (x, y) =

(
2x− 1 1− 2y
y + 2 x

)
.

(x, y) = (−2,−2):

J(−2,−2) =
(
−5 −5
0 −2

)
.

(Continued on page 3.)
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The determinant is D = 10 > 0, the trace is T = −7 < 0, and the
discriminant is T 2 − 4D = 9 > 0. Hence (−2,−2) is a sink.

(x, y) = (0, 0):

J(0, 0) =

(
−1 1
2 0

)
.

The determinant is D = −2 < 0. Hence (0, 0) is a saddle.

(x, y) = (0, 1):

J(0, 1) =

(
−1 −1
3 0

)
.

The determinant isD = 3 > 0, the trace is T = −1 < 0, and the discriminant
is T 2 − 4D = −11 < 0. Hence (0, 1) is a spiral sink.

(x, y) = (3,−2):

J(3,−2) =
(
5 5
0 3

)
.

The determinant is D = 15 > 0, the trace is T = 8 > 0, and the discriminant
is T 2 − 4D = 4 > 0. Hence (3,−2) is a source.

c

Consider the nonlinear differential equation

x′ = fr(x) := x(x− 2) + r,

where r is a parameter. Determine the equilibrium solutions and classify
their stability (source / sink). Plot slope lines and a bifurcation diagram.

Answer: The equilibrium points satisfy x2 − 2x+ r = 0 and are thus

x = 1±
√
1− r;

we have two equilibrium points (x = 1 ±
√
1− r) when r < 1 and one

equilibrium point (x = 1) when r = 1. We compute f ′r(x) = 2(x−1), and so

f ′r
(
1 +
√
1− r

)
= 2
√
1− r > 0,

f ′r
(
1−
√
1− r

)
= −2

√
1− r < 0,

for r < 1. As a result, x = 1 +
√
1− r is a source (unstable) and

x = 1 −
√
1− r is a sink (stable). Moreover, f ′r(1) = 0 so x = 1 (with

r = 1) is a non-hyperbolic equilibrium point.
As r increases to 1, we go from two equilibrium points (r < 1) to one

equilibrium point (r = 1). In other words, r = 1 is a saddle-node bifurcation.

Problem 2

a

Consider the nonlinear system

x′ = −y3, y′ = x3.

(Continued on page 4.)
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Figure 1: Problem 1c. Plot of fr(x) (top). Plot of slope lines (bottom left)
for r = 1

2 . Bifurcation plot (bottom right)—blue (x = 1+
√
1− r) and yellow

(x = 1−
√
1− r).

Verify that (0, 0) is a non-hyperbolic equilibrium point. Plot the
corresponding phase portrait. Use the Liapunov stability theorem to prove
that (0, 0) is stable. Plot your Liapunov function.

Answer: Set F (x, y) =

(
−y3
x3

)
. Then DF (x, y) =

(
0 −3y2

3x2 0

)
, and so

DF (0, 0) becomes the zero matrix. This verifies that the origin is a non-
hyperbolic equilibrium point. A possible Liapunov function is

L(x, y) = x4 + y4.

Then L(0, 0) = 0 and L(x, y) > 0 for all (x, y) 6= (0, 0). Moreover,

L̇(x, y) = DL(x, y) · F (x, y)
=
(
4x3, 4y3

)
·
(
−y3, x3

)
= −4x3y3 + 4y3x3 = 0.

In other words, L is constant along solutions of the system of differential
equations: d

dtL(x(t), y(t)) = 0. The Liapunov stability theorem then implies
that (0, 0) is stable.

b

Consider the nonlinear system

x′ = −2y + yz, y′ = x− xz, z′ = xy.

Verify that the origin (x, y, z) = (0, 0, 0) is a non-hyperbolic equilibrium
point. Employ the Liapunov stability method to show that the origin is

(Continued on page 5.)
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Figure 2: Problem 2a. Phase portrait (left) and Liapunov function L (right).

stable. Hint: Try to construct a Liapunov function of the form

L(x, y, z) = ax2 + by2 + cz2,

for some suitable coefficients a, b, c ∈ R.

Answer: Set

F (x, y, z) =

−2y + yz
x− xz
xy

 .

Clearly, F (0, 0, 0) = 0. Let us compute the Jacobian

J(x, y, z) = DF (x, y, z) =

 0 −2 + z y
1− z 0 −x
y x 0

 ,

and so J(0, 0, 0) =

0 −2 0
1 0 0
0 0 0

. The eigenvalues of this matrix, which are

0, ±i
√
2,

have zero real part. Thus, (0, 0, 0) is non-hyperbolic. Regarding the
Liapunov function, let us compute

L̇(x, y, z) = DL(x, y, z) · F (x, y, z)
= (2ax, 2by, 2cz) · (−2y + yz, x− xz, xy)
= −4axy + 2axyz + 2bxy − 2bxyz + 2cxyz

= (−4a+ 2b)xy + (2a− 2b+ 2c)xyz.

Let us pick a, b, c such that

− 4a+ 2b = 0⇐⇒ b = 2a,

2a− 2b+ 2c = 0⇐⇒ c = a.

Let us take a = 1, b = 2 and c = 1. Then L becomes

L(x, y, z) = x2 + 2y2 + z2.

It is immediately clear that L(0, 0, 0) = 0 and L(x, y, z) > 0 for all
(x, y, z) 6= (0, 0, 0). Moreover, L̇(0, 0, 0) = 0. Therefore, by the Liapunov
stability theorem, (0, 0, 0) is a stable equilibrium point.

(Continued on page 6.)
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c

Consider the second-order differential equation

x′′ + f(x)x′ + g(x) = 0, (1)

which arises in numerous models in physics, chemistry, and biology. In
its mechanical interpretation the equation models the movement of a mass
subjected to a damping force −f(x)x′ and a restoring force −g(x), where
f, g are given continuously differentiable functions. In what follows, define

F (x) =

∫ x

0
f(z) dz, G(x) =

∫ x

0
g(z) dz.

(i) Argue that (1) can be written as the following system of first order
differential equations:

x′ = y − F (x), y′ = −g(x). (2)

Suppose G(x) > 0 for all x 6= 0. We call the quantity

E(t) := G(x(t)) +
1

2
y2(t)

the total energy of the system at time t, which consists of potential energy
G(x(t)) and kinetic energy 1

2y
2(t).

(ii) Suppose g(x)F (x) > 0 for all x 6= 0. Under this assumption, prove
that the total energy is strictly decreasing in time t.

Answer: (i) Let x(t) and y(t) solve (2). Using the chain rule, differentiating
x′ gives

x′′ = y′ − F ′(x)x′ = −g(x)− f(x)x′,

which shows that x solves (1).
(ii) Multiply the first equation in (2) by g(x) and the second equation by

y. Adding the resulting equations supplies

g(x)x′ + yy′ = g(x)y − g(x)F (x)− yg(x) = −g(x)F (x).

By the chain rule (applied to the left-hand side) and the definition of G,

d

dt

(
G(x(t)) +

1

2
y2(t)

)
= −g(x(t))F (x(t)).

In other words,
d

dt
E(t) = −g(x(t))F (x(t)) < 0,

by our assumption. This shows that the total energy E(t) is strictly
decreasing in t.

(Continued on page 7.)
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d

Show that (x, y) = (0, 0) is an asymptotically stable equilibrium solution of
(2), under the same assumptions as in Problem 2c and also g(0) = 0.

Answer: Making use of the fact that F (0) = g(0) = 0, we see that
(x, y) = (0, 0) is an equilibrium solution of (2). The simplest approach
to studying the stability of (0, 0) consists in applying the Liapunov stability
theorem. Motivated by Problem 2c, set

L(x, y) = G(x) +
1

2
y2.

Then L(0, 0) = 0 and L(x, y) > 0 for all (x, y) 6= 0, since G(x) > 0 ∀x 6= 0.
Besides,

L̇(x, y) = DL(x, y) · (y − F (x),−g(x))
= (g(x), y) · (y − F (x),−g(x))
= g(x)y − g(x)F (x)− yg(x) = −g(x)F (x) < 0,

as long as x 6= 0, since g(x)F (x) is assumed to be strictly positive for x 6= 0.
Hence, L is a Liapunov function and the claim follows from the Liapunov
stability theorem.

Problem 3

a

Let f, g : R2 → R be two continuously differentiable functions, and
introduce the vector field F (x, y) = (f(x, y), g(x, y)). Consider the system
of differential equations

x′ = f(x, y), y′ = g(x, y).

Prove that this is a Hamiltonian system if and only if divF = 0, where div
denotes the divergence of the vector field F with respect to x, y.

Answer: The system of differential equations is a Hamiltonian system ⇐⇒

x′ = Hy(x, y), y′ = −Hx(x, y),

for some function H = H(x, y) : R2 → R. In other words, H must satisfy
the equations Hy = f and Hx = −g. Since Hyx = Hxy, these equations
imply that fx = −gy or divF = fx + gy = 0.

b

Consider the Hamiltonian system

x′ = Hy(x, y), y′ = −Hx(x, y), (3)

where the Hamiltonian function H = H(x, y) : R2 → R is twice continuously
differentiable, and Hx = ∂H

∂x and Hy = ∂H
∂y denote the partial derivatives

(Continued on page 8.)
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of H with respect to x and y, respectively. Suppose (x, y) = (0, 0) is an
equilibrium solution of (3), and that

Hxx(0, 0)Hyy(0, 0)− (Hxy(0, 0))
2 > 0. (4)

Prove that the equilibrium solution (0, 0) is a center of the linearized system.

Answer: With X =

(
x
y

)
and F (X) =

(
Hy

−Hx

)
, we can write (3) in the form

X ′ = F (X).

The linearized system is

X ′ = AX, A = DF (0).

We compute

A =

(
Hyx(0, 0) Hyy(0, 0)
−Hxx(0, 0) −Hxy(0, 0)

)
.

Since Hyx = Hxy, the trace is T = 0. The determinant is

D = − (Hxy(0, 0))
2 +Hxx(0, 0)Hyy(0, 0).

Given (4), it follows that D > 0. Finally, the discriminant is

T 2 − 4D = −4D < 0.

Hence (0, 0) is a center.

c

Consider the nonlinear system

x′ = y + x2 − y2, y′ = −x− 2xy.

Explain why this is a Hamiltonian system. Plot the phase portrait. Prove
that the equilibrium solution (x, y) = (0, 0) is a center of the linearized
system.

Answer: Set F (x, y) =
(
y + x2 − y2,−x− 2xy

)
, and compute

divF (x, y) = 2x− 2x = 0.

The Hamiltonian structure then follows from Problem 3a. The Hamiltonian
function is determined by the equations

Hy = y + x2 − y2, −Hx = −x− 2xy.

A corresponding Hamiltonian function H is

H(x, y) =
1

2
x2 +

1

2
y2 − 1

3
y3 + x2y.

In view of Problem 3b, we compute

Hxx = 1 + 2y, Hyy = 1− 2y, Hxy = 2x

=⇒ HxxHyy − (Hxy)
2 = 1− 4x2 − 4y2;

therefore
Hxx(0, 0)Hyy(0, 0)− (Hxy(0, 0))

2 = 1 > 0.

This proves that the origin is a center, thanks to Problem 3b.

THE END
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Figure 3: Problem 3c. Phase portrait.

(Continued on page 10.)


