UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:	MAT3440 — Dynamical systems		
Day of examination:	Monday, June 14th, 2021		
Examination hours:	09.00-13.00		
This problem set cons	sists of 8 pages.		
Appendices:	None		
Permitted aids:	All aids are allowed.		

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

а

Consider the coefficient matrix

$$A = \begin{pmatrix} 2 & -5 \\ a & -2 \end{pmatrix},$$

which depends on a parameter $a \in \mathbb{R}$. Use trace-determinant analysis to determine the phase portrait—saddle, (spiral) sink, (spiral) source or center—of the linear system of differential equations X' = AX.

Determine the general solution of X' = AX for $a = \frac{3}{5}$.

<u>Answer:</u> The trace is T = 0, the determinant is D = -4 + 5a, and the discriminant is $T^2 - 4D = 4 - 5a$. The matrix A has complex eigenvalues if $T^2 - 4D < 0 \iff 4 - 5a < 0 \iff a > \frac{4}{5}$. Since T = 0, we have in this case that the phase portrait is a center. We have real eigenvalues if $T^2 - 4D > 0 \iff 4 - 5a > 0 \iff a < \frac{4}{5}$. Since D < 0, in this case the phase portrait is a saddle.

T ² -40<0: (Complex eigenvalues)
1. T<0 ⇒ spiral nink
2. T>O => spiral source
3. T=0 ⇒ Center
T2-40>0: (real eigenvalues)
1. 0<0 -> Saddle
(recall A-A+ = D < D => one neg. and one pos. eigenvalue)
2. D>0 and T<0 ⇒ Sink
(recall $\lambda_{\pm} = \frac{1}{2} \left(T \pm \sqrt{T^2 - 40} \right) < 0$)
3. 0>0 and T>0 => Source
(recall $\lambda_{\pm} = \frac{1}{2} (T \pm \sqrt{T^2 - 40}) > 0$)

(Continued on page 2.)

Finally, if $a = \frac{4}{5}$, then the determinant D = 0. In this case, the (repeated) eigenvalues of

$$A = \begin{pmatrix} 2 & -5\\ \frac{4}{5} & -2 \end{pmatrix}$$

is $\lambda = 0$. Let us determine the phase portrait in this case. Adding -2 times the first differential equation to 5 times the second equation gives -2x'(t) + 5y'(t) = 0, so that in the *xy*-plane the solution curves are given by $\frac{dy}{dx} = -\frac{2}{5}$, which implies that they are straight lines given by $y = \frac{2}{5}x + C$, for any constant C.

If $a = \frac{3}{5}$, then the resulting matrix

$$A = \begin{pmatrix} 2 & -5\\ \frac{3}{5} & -2 \end{pmatrix}$$

has eigenvalues $\lambda_{\pm} = \pm 1$. The corresponding eigenvectors are $V_{-} = \begin{pmatrix} \frac{5}{3} \\ 1 \end{pmatrix}$ and $V_{+} = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$. This gives the generalized solution

$$X(t) = c_1 e^{\lambda_- t} V_- + c_2 e^{\lambda_+ t} V_+ = \begin{pmatrix} \frac{5}{3} c_1 e^{-t} + 5c_2 e^t \\ c_1 e^{-t} + c_2 e^t \end{pmatrix},$$

for any $c_1, c_2 \in \mathbb{R}$.

\mathbf{b}

Consider the nonlinear system

$$x' = -x + x^2 + y - y^2,$$

$$y' = 2x + xy.$$

Determine the (four) equilibrium solutions. Use the linearization method to determine the phase portrait near each equilibrium solution.

Answer: The equilibrium points, i.e., the solutions of

$$-x + x^2 + y - y^2 = 0, \quad 2x + xy = 0,$$

are

$$(-2, -2), (0, 0), (0, 1), (3, -2).$$

Set

$$F(x,y) = (-x + y + x^{2} - y^{2}, 2x + xy).$$

The Jacobian matrix is

$$J(x,y) := DF(x,y) = \begin{pmatrix} 2x - 1 & 1 - 2y \\ y + 2 & x \end{pmatrix}.$$

 $\underline{(x,y) = (-2,-2):} J(-2,-2) = \begin{pmatrix} -5 & -5 \\ 0 & -2 \end{pmatrix}.$

(Continued on page 3.)

The determinant is D = 10 > 0, the trace is T = -7 < 0, and the discriminant is $T^2 - 4D = 9 > 0$. Hence (-2, -2) is a sink.

$$\underline{(x,y) = (0,0):} \qquad \qquad J(0,0) = \begin{pmatrix} -1 & 1 \\ 2 & 0 \end{pmatrix}.$$

The determinant is D = -2 < 0. Hence (0, 0) is a saddle.

(x, y) = (0, 1):

$$J(0,1) = \begin{pmatrix} -1 & -1 \\ 3 & 0 \end{pmatrix}.$$

The determinant is D = 3 > 0, the trace is T = -1 < 0, and the discriminant is $T^2 - 4D = -11 < 0$. Hence (0, 1) is a spiral sink.

(x, y) = (3, -2):

$$J(3,-2) = \begin{pmatrix} 5 & 5\\ 0 & 3 \end{pmatrix}.$$

The determinant is D = 15 > 0, the trace is T = 8 > 0, and the discriminant is $T^2 - 4D = 4 > 0$. Hence (3, -2) is a source.

1	r		
1	L		
	1	-	

Consider the nonlinear differential equation

$$x' = f_r(x) := x(x-2) + r,$$

where r is a parameter. Determine the equilibrium solutions and classify their stability (source / sink). Plot slope lines and a bifurcation diagram.

<u>Answer:</u> The equilibrium points satisfy $x^2 - 2x + r = 0$ and are thus

$$x = 1 \pm \sqrt{1 - r};$$

we have two equilibrium points $(x = 1 \pm \sqrt{1-r})$ when r < 1 and one equilibrium point (x = 1) when r = 1. We compute $f'_r(x) = 2(x-1)$, and so

$$\begin{aligned} f_r' \left(1 + \sqrt{1 - r} \right) &= 2\sqrt{1 - r} > 0, \\ f_r' \left(1 - \sqrt{1 - r} \right) &= -2\sqrt{1 - r} < 0, \end{aligned}$$

for r < 1. As a result, $x = 1 + \sqrt{1-r}$ is a source (unstable) and $x = 1 - \sqrt{1-r}$ is a sink (stable). Moreover, $f'_r(1) = 0$ so x = 1 (with r = 1) is a non-hyperbolic equilibrium point.

As r increases to 1, we go from two equilibrium points (r < 1) to one equilibrium point (r = 1). In other words, r = 1 is a saddle-node bifurcation.

Problem 2

a

Consider the nonlinear system

$$x' = -y^3, \quad y' = x^3.$$

(Continued on page 4.)

Figure 1: Problem 1c. Plot of $f_r(x)$ (top). Plot of slope lines (bottom left) for $r = \frac{1}{2}$. Bifurcation plot (bottom right)—blue $(x = 1 + \sqrt{1-r})$ and yellow $(x = 1 - \sqrt{1-r})$.

Verify that (0,0) is a non-hyperbolic equilibrium point. Plot the corresponding phase portrait. Use the Liapunov stability theorem to prove that (0,0) is stable. Plot your Liapunov function.

<u>Answer:</u> Set $F(x,y) = \begin{pmatrix} -y^3 \\ x^3 \end{pmatrix}$. Then $DF(x,y) = \begin{pmatrix} 0 & -3y^2 \\ 3x^2 & 0 \end{pmatrix}$, and so DF(0,0) becomes the zero matrix. This verifies that the origin is a non-hyperbolic equilibrium point. A possible Liapunov function is

$$L(x,y) = x^4 + y^4.$$

Then L(0,0) = 0 and L(x,y) > 0 for all $(x,y) \neq (0,0)$. Moreover,

$$\dot{L}(x,y) = DL(x,y) \cdot F(x,y)$$

= $(4x^3, 4y^3) \cdot (-y^3, x^3) = -4x^3y^3 + 4y^3x^3 = 0.$

In other words, L is constant along solutions of the system of differential equations: $\frac{d}{dt}L(x(t), y(t)) = 0$. The Liapunov stability theorem then implies that (0,0) is stable.

 \mathbf{b}

Consider the nonlinear system

$$x' = -2y + yz, \quad y' = x - xz, \quad z' = xy.$$

Verify that the origin (x, y, z) = (0, 0, 0) is a non-hyperbolic equilibrium point. Employ the Liapunov stability method to show that the origin is

(Continued on page 5.)

Figure 2: Problem 2a. Phase portrait (left) and Liapunov function L (right).

stable. <u>Hint</u>: Try to construct a Liapunov function of the form

$$L(x, y, z) = ax^2 + by^2 + cz^2,$$

for some suitable coefficients $a, b, c \in \mathbb{R}$.

Answer: Set

$$F(x, y, z) = \begin{pmatrix} -2y + yz \\ x - xz \\ xy \end{pmatrix}.$$

Clearly, F(0,0,0) = 0. Let us compute the Jacobian

$$J(x, y, z) = DF(x, y, z) = \begin{pmatrix} 0 & -2 + z & y \\ 1 - z & 0 & -x \\ y & x & 0 \end{pmatrix},$$

and so $J(0,0,0) = \begin{pmatrix} 0 & -2 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. The eigenvalues of this matrix, which are

$$0, \pm i\sqrt{2},$$

have zero real part. Thus, (0,0,0) is non-hyperbolic. Regarding the Liapunov function, let us compute

$$L(x, y, z) = DL(x, y, z) \cdot F(x, y, z)$$

= $(2ax, 2by, 2cz) \cdot (-2y + yz, x - xz, xy)$
= $-4axy + 2axyz + 2bxy - 2bxyz + 2cxyz$
= $(-4a + 2b)xy + (2a - 2b + 2c)xyz$.

Let us pick a, b, c such that

$$-4a + 2b = 0 \iff b = 2a,$$

$$2a - 2b + 2c = 0 \iff c = a.$$

Let us take a = 1, b = 2 and c = 1. Then L becomes

$$L(x, y, z) = x^2 + 2y^2 + z^2$$

It is immediately clear that L(0,0,0) = 0 and L(x,y,z) > 0 for all $(x,y,z) \neq (0,0,0)$. Moreover, $\dot{L}(0,0,0) = 0$. Therefore, by the Liapunov stability theorem, (0,0,0) is a stable equilibrium point.

(Continued on page 6.)

С

Consider the second-order differential equation

$$x'' + f(x)x' + g(x) = 0,$$
(1)

which arises in numerous models in physics, chemistry, and biology. In its mechanical interpretation the equation models the movement of a mass subjected to a damping force -f(x)x' and a restoring force -g(x), where f, g are given continuously differentiable functions. In what follows, define

$$F(x) = \int_0^x f(z) \, dz, \quad G(x) = \int_0^x g(z) \, dz.$$

(i) Argue that (1) can be written as the following system of first order differential equations:

$$x' = y - F(x), \quad y' = -g(x).$$
 (2)

Suppose G(x) > 0 for all $x \neq 0$. We call the quantity

$$E(t) := G(x(t)) + \frac{1}{2}y^2(t)$$

the total energy of the system at time t, which consists of potential energy G(x(t)) and kinetic energy $\frac{1}{2}y^2(t)$.

(ii) Suppose g(x)F(x) > 0 for all $x \neq 0$. Under this assumption, prove that the total energy is strictly decreasing in time t.

<u>Answer:</u> (i) Let x(t) and y(t) solve (2). Using the chain rule, differentiating x' gives

$$x'' = y' - F'(x)x' = -g(x) - f(x)x',$$

which shows that x solves (1).

(ii) Multiply the first equation in (2) by g(x) and the second equation by y. Adding the resulting equations supplies

$$g(x)x' + yy' = g(x)y - g(x)F(x) - yg(x) = -g(x)F(x).$$

By the chain rule (applied to the left-hand side) and the definition of G,

$$\frac{d}{dt}\left(G(x(t)) + \frac{1}{2}y^2(t)\right) = -g(x(t))F(x(t)).$$

In other words,

$$\frac{d}{dt}E(t) = -g(x(t))F(x(t)) < 0$$

by our assumption. This shows that the total energy E(t) is strictly decreasing in t.

d

Show that (x, y) = (0, 0) is an asymptotically stable equilibrium solution of (2), under the same assumptions as in Problem 2c and also g(0) = 0.

<u>Answer:</u> Making use of the fact that F(0) = g(0) = 0, we see that (x, y) = (0, 0) is an equilibrium solution of (2). The simplest approach to studying the stability of (0, 0) consists in applying the Liapunov stability theorem. Motivated by Problem 2c, set

$$L(x,y) = G(x) + \frac{1}{2}y^2.$$

Then L(0,0) = 0 and L(x,y) > 0 for all $(x,y) \neq 0$, since $G(x) > 0 \ \forall x \neq 0$. Besides,

$$\begin{split} L(x,y) &= DL(x,y) \cdot (y - F(x), -g(x)) \\ &= (g(x),y) \cdot (y - F(x), -g(x)) \\ &= g(x)y - g(x)F(x) - yg(x) = -g(x)F(x) < 0, \end{split}$$

as long as $x \neq 0$, since g(x)F(x) is assumed to be strictly positive for $x \neq 0$. Hence, L is a Liapunov function and the claim follows from the Liapunov stability theorem.

Problem 3

а

Let $f,g : \mathbb{R}^2 \to \mathbb{R}$ be two continuously differentiable functions, and introduce the vector field F(x,y) = (f(x,y), g(x,y)). Consider the system of differential equations

$$x' = f(x, y), \quad y' = g(x, y).$$

Prove that this is a Hamiltonian system if and only if div F = 0, where div denotes the divergence of the vector field F with respect to x, y.

<u>Answer:</u> The system of differential equations is a Hamiltonian system \iff

$$x' = H_y(x, y), \quad y' = -H_x(x, y),$$

for some function $H = H(x, y) : \mathbb{R}^2 \to \mathbb{R}$. In other words, H must satisfy the equations $H_y = f$ and $H_x = -g$. Since $H_{yx} = H_{xy}$, these equations imply that $f_x = -g_y$ or div $F = f_x + g_y = 0$.

 \mathbf{b}

Consider the Hamiltonian system

$$x' = H_y(x, y), \quad y' = -H_x(x, y),$$
 (3)

where the Hamiltonian function $H = H(x, y) : \mathbb{R}^2 \to \mathbb{R}$ is twice continuously differentiable, and $H_x = \frac{\partial H}{\partial x}$ and $H_y = \frac{\partial H}{\partial y}$ denote the partial derivatives

(Continued on page 8.)

of H with respect to x and y, respectively. Suppose (x, y) = (0, 0) is an equilibrium solution of (3), and that

$$H_{xx}(0,0)H_{yy}(0,0) - (H_{xy}(0,0))^2 > 0.$$
(4)

Prove that the equilibrium solution (0,0) is a center of the linearized system.

Answer: With
$$X = \begin{pmatrix} x \\ y \end{pmatrix}$$
 and $F(X) = \begin{pmatrix} H_y \\ -H_x \end{pmatrix}$, we can write (3) in the form $X' = F(X)$.

The linearized system is

$$X' = AX, \quad A = DF(0).$$

We compute

$$A = \begin{pmatrix} H_{yx}(0,0) & H_{yy}(0,0) \\ -H_{xx}(0,0) & -H_{xy}(0,0) \end{pmatrix}.$$

Since $H_{yx} = H_{xy}$, the trace is T = 0. The determinant is

$$D = -(H_{xy}(0,0))^2 + H_{xx}(0,0)H_{yy}(0,0).$$

Given (4), it follows that D > 0. Finally, the discriminant is

$$T^2 - 4D = -4D < 0.$$

Hence (0,0) is a center.

С

Consider the nonlinear system

$$x' = y + x^2 - y^2, \quad y' = -x - 2xy.$$

Explain why this is a Hamiltonian system. Plot the phase portrait. Prove that the equilibrium solution (x, y) = (0, 0) is a center of the linearized system.

<u>Answer:</u> Set $F(x, y) = (y + x^2 - y^2, -x - 2xy)$, and compute div F(x, y) = 2x - 2x = 0.

The Hamiltonian structure then follows from Problem 3a. The Hamiltonian function is determined by the equations

$$H_y = y + x^2 - y^2$$
, $-H_x = -x - 2xy$.

A corresponding Hamiltonian function H is

$$H(x,y) = \frac{1}{2}x^{2} + \frac{1}{2}y^{2} - \frac{1}{3}y^{3} + x^{2}y.$$

In view of Problem 3b, we compute

$$H_{xx} = 1 + 2y, \quad H_{yy} = 1 - 2y, \quad H_{xy} = 2x$$

 $\implies \quad H_{xx}H_{yy} - (H_{xy})^2 = 1 - 4x^2 - 4y^2;$

therefore

$$H_{xx}(0,0)H_{yy}(0,0) - (H_{xy}(0,0))^2 = 1 > 0$$

This proves that the origin is a center, thanks to Problem 3b.

THE END

Figure 3: Problem 3c. Phase portrait.