
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Exam in: MAT3440 –– Dynamical systems

Day of examination: 15 June 2022

Examination hours: 15:00 – 19:00

This problem set consists of 7 pages.

Appendices: None

Permitted aids: None

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Note:

• You can get a total of 110 points. The point distribution is specified
for each problem.

• All answers must be justified.

Problem 1 (15p)

Consider the system {
ẋ = −(x− 1)3 − (x− y)3

ẏ = (x− y)3
(1)

1a (3p)

Show that u∗ := (1, 1) is the only fixed point.

1b (5p)

Find the linearized system for u∗. Does the linearization tell us anything
about the stability of the fixed point? Explain why, or why not.

1c (7p)

Show that u∗ is an asymptotically stable fixed point.

Hint: Show first that the system is a gradient system.

Solution:

1a

It is clear that u∗ is a fixed point. At any fixed point we need
(x − y)3 = 0, that is, x = y, and hence also (x − 1)3 = 0, so x = 1,
whence y = 1.

(Continued on page 2.)



Exam in MAT3440, 15 June 2022 Page 2

1b

The linearized system around u∗ is v̇ = Av, where A = ∇F (u∗) = 0.
The eigenvalues of A are 0, so u∗ is not hyperbolic. We can therefore
not use the linearized system to learn about the stability of the fixed
point.

1c

We claim that u̇ = −∇G(u) for some G : R2 → R. Indeed, by the
equation for ẏ, G must contain a term 1

4(x − y)4, and by the equation
for ẋ, G must contain the terms 1

4(x− 1)4 and 1
4(x− y)4. The function

G(x, y) := 1
4(x− 1)4 + 1

4(x− y)4 fits both these needs.
This function G has u∗ as its unique, global minimum. Hence, G is

a Lyapunov function for u∗ on all of R2, so by the theory of Lyapunov
functions, u∗ is asymptotically stable (in fact, globally attracting).

Problem 2 (10p)

Compute the matrix exponential of A :=

(
−1 −3
0 2

)
.

Solution: A is upper triangular so the eigenvalues are the diagonal
entries: λ1 = −1 and λ2 = 2. The corresponding eigenvectors are

r1 =

(
1
0

)
and r2 =

(
1
−1

)
. Denote Λ = diag(λ1, λ2) and R = (r1 r2).

Then A = RΛR−1, where R−1 =

(
1 1
0 −1

)
= R. We get

eA = ReΛR−1 =

(
1 1
0 −1

)(
e−1 0
0 e2

)(
1 1
0 −1

)
=

(
e−1 e−1 − e2

0 e2

)
.

Problem 3 (10p)

Consider the explicit Euler (forward Euler) method with step length h > 0,
applied to the system

u̇ = Au, where A =

(
0 1

−1000 −1001

)
. (2)

Find the largest number h0 > 0 such that this method is linearly stable for
any step length h ∈ (0, h0).

Hint: You may use what you have learnt in class about the stability region
and stability function of the explicit Euler method.

Solution: The eigenvalues of A are λ1 = −1 and λ2 = −1000. In class
we have found that the stability region of the explicit Euler method is
D = {z ∈ C : |z + 1| ⩽ 1}. Since we need λkh ∈ D for k = 1, 2, and
the eigenvalues are real, we need λkh ∈ D ∩ R = [−2, 0], so we need

(Continued on page 3.)



Exam in MAT3440, 15 June 2022 Page 3

h ⩽ 2/|λk| for k = 1, 2. This yields the value h0 = 2/1000 = 1/500.

Problem 4 (45p)

Consider the system {
ẋ = αx− y − x3

ẏ = x+ αy − y3
(3)

for some parameter α. It can be shown that if α < 2 then the only fixed
point of (1) is the origin (you don’t need to show this).

4a (5p)

For some value of α < 2 of your choice, draw the nullclines of (3) and
indicate the direction of the velocity field.

4b (5p)

Show that sets of the form AR := {(x, y) : x2+y2 < R} are forward invariant
whenever R > 0 is large enough.

4c (10p)

Show that (3) has a unique solution defined for all t ⩾ 0 for any initial data
(x(0), y(0)).

4d (10p)

Determine the type of stability of (0, 0) (i.e., Lyapunov stable, unstable,
asymptotically stable, etc.) for all values of α < 2.

4e (10p)

Show that the system has a periodic orbit when α ∈ (0, 2).

4f (5p)

Draw a bifurcation diagram for (3). What sort of bifurcation does (3)
undergo, and for what value of α?

Solution:

4a

...

4b

We study the evolution of L(x, y) := x2 + y2:

L̇ = 2x(αx− y − x3) + 2y(αx+ y − y3) = 2
(
α(x2 + y2)− x4 − y4

)
,

(Continued on page 4.)
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which is negative whenever x2 + y2 is large enough. (A proof of this
goes as follows: By the elementary inequality 2ab ⩽ a2 + b2 we get

L̇ ⩽ 2α(x2 + y2)− x4 − y4 − 2x2y2 = 2α(x2 + y2)− (x2 + y2)2,

which is strictly negative when x2 + y2 > 2α.) Hence, any solution on
the boundary of ∂AR, for R large enough, will move into AR. It follows
that AR is forward invariant.

4c

The velocity field in (3) is locally Lipschitz continuous since it is C1 (in
fact, C∞). Therefore, it follows from the Cauchy–Lipschitz theory that
there exists a unique solution defined for all t ∈ (−τ, τ) for some τ > 0.
If R > 0 is large enough that (x(0), y(0)) ∈ AR and AR is forward
invariant, then the solution remains bounded as t increases. It follows
that the solution exists for all t ⩾ 0.

4d

The linearization at (0, 0) is

v̇ = Av, where A =

(
α −1
1 α

)
.

The eigenvalues of A are α±i. The real part of both eigenvalues is α, so
the fixed point is repelling for α > 0 and attracting when α < 0. When
α = 0 we can use the estimate in problem 4b to see that L̇ = −2(x4+y4),
so L is a Lyapunov function for (0, 0), whence the origin is attracting.

Alternative solution: From the estimate in problem 4b, we see that

L̇ ⩾ 2α(x2 + y2)− 2(x4 + 2x2y2 + y4) = 2r2(α− r2)

where r = ∥(x, y)∥.

• When α > 0, this quantity is strictly positive in the disc U :=
Br0(0) (where r0 =

√
α), apart from at (x, y) = (0, 0). Moreover,

(0, 0) is a strict minimum of L. It follows that L is a Lyapunov
function for (3) but backwards in time. Hence, (0, 0) is repelling,
i.e. asymptotically stable backwards in time.

• When α ⩽ 0 this quantity is strictly negative everywhere apart
from at (0, 0). By the same reasoning, it follows that (0, 0) is
(globally) attracting.

4e

Let R > 0 be such that AR is forward invariant. If u0 ∈ AR is any point
apart from the origin, then Γ+(u0) is bounded (since AR is bounded),

(Continued on page 5.)
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so by the Poincaré–Bendixson theorem, ω(u0) either contains a fixed
point or a periodic orbit. But the only fixed point in AR is 0, which
is repelling, so ω(u0) must be a periodic orbit. We conclude that there
exists a periodic orbit.

4f

The system undergoes a Hopf bifurcation at α = 0 near (0, 0). Indeed,
for α < 0 the fixed point is globally attracting, so there are no periodic
orbits, while for α > 0 there is a periodic orbit.

−1 0 1
−1

0

1

α

x

Problem 5 (30p)

Consider the Lotka–Volterra model{
ẋ = x(3− x− 2y)

ẏ = y(2− x− y),
(4)

which is a model for the number of individuals in two species in an ecosystem.
In particular, we require x, y ⩾ 0. It is easy to check that

p0 := (0, 0), p1 := (1, 1), p2 := (0, 2) and p3 := (3, 0)

are fixed points for (4) (you don’t need to check this).

5a (3p)

Are the species predators or prey?

5b (5p)

Find the nullclines of (4) and use them to draw a (rough) phase portrait.
Be sure to indicate the fixed points.

5c (8p)

It can be shown that p2 and p3 are asymptotically stable (you don’t need to
show this). Show that p0 is repelling (i.e., asymptotically stable backwards
in time), and that p1 is unstable (i.e., not Lyapunov stable).

(Continued on page 6.)
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5d (14p)

What does the stable manifold theorem say about the fixed point p1? Use
this information to draw a new, more detailed phase portrait.

Solution:

5a

Both species are prey animals, since neither specie will benefit from the
abundance of the other specie.

5b

The figure above shows the nullclines and arrows indicating the
direction of the velocity field.

5c

The Jacobian of the velocity field is

∇F (x, y) =

(
3− 2x− 2y −2x

−y 2− x− 2y

)
.

Hence,

∇F (p0) =

(
3 0
0 2

)
, ∇F (p1) =

(
−1 −2
−1 −1

)
.

Hence, the eigenvalues of p0 are 3, 2, which are positive, so p0 is repelling.
The eigenvalues of p1 are λ± − 1 ±

√
2, which have opposing signs, so

p1 is unstable.

(Continued on page 7.)
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5d

The eigenvectors of ∇F (p1) corresponding to λ± = −1 ±
√
2 are

r± =

(
∓
√
2

1

)
. According to the stable manifold theorem, there are

two branches of the stable manifold emanating from p1 in the directions
±r−, and two branches of the unstable manifold emanating from p1 in
the directions ±r+. According to the phase portrait in problem 5b, the
two branches of the stable manifold must come from p0 and (∞,∞),
and the two branches of the unstable manifold must approach p2 and
p3 as t → ∞.

The above figure shows the nullclines, along with the stable manifold
(orange) and the unstable manifold (purple) of p1, as well as four other
orbits.


