MANDATORY ASSIGNMENT MAT3440-SPRING 2020

INFORMATION

All mandatory assignments must be uploaded via Canvas.

- The assignment must be submitted as a single PDF file.
- Scanned pages must be clearly legible.
- The submission must contain your name, course and assignment number. If these requirements are not met, the assignment will not be evaluated. Read the information about mandatory assignments carefully: http://www. uio.no/english/studies/ examinations/compulsory-activities/mn-math-mandatory.html

To have a passing grade you must have satisfactory answers to at least 50\% of the questions and have attempted to solve all of them.

PROBLEM 1

a)

Consider the nonlinear differential equation

$$
x^{\prime}=f_{r}(x):=r x-x^{3}
$$

which depends on a parameter $r \in \mathbb{R}$. Determine the equilibrium solutions and classify their stability (source / sink). Draw slope fields, phase lines, and a bifurcation diagram.

b)

Consider the nonlinear differential equation

$$
x^{\prime}=g_{b}(x):=x-x^{3}+b
$$

which depends on a parameter $b \in \mathbb{R}$. Explain what happen to the equilibrium solutions when we change the parameter b ? Sketch a bifurcation diagram.
c)

Consider the following differential equation with 2π-periodic forcing term:

$$
x^{\prime}=f(t, x)=-x+2 \cos t
$$

Compute the Poincaré map $p\left(x_{0}\right)$.
d)

Determine the fixed point x_{f} of the Poincare map, and the corresponding 2π-periodic solution $x_{f}(t)$ of $x^{\prime}=f(t, x), x(0)=x_{f}$. What happens with any other solution as $t \rightarrow \infty$.

PROBLEM 2

a)

Find the general solution and draw the phase portrait for the linear system

$$
x^{\prime}=-y, \quad y^{\prime}=x
$$

Determine the solution that satisfies $x(0)=x_{0}, y(0)=y_{0}$.
b)

Find the general solution and draw the phase portrait for the linear system

$$
x^{\prime}=-x+y, \quad y^{\prime}=-y .
$$

Determine the solution that satisfies $x(0)=x_{0}, y(0)=y_{0}$. What happens to the solution $(x(t), y(t))$ as $t \rightarrow \infty$?
c)

Compute $\exp (A)$, where $A=\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right), a, b \in \mathbb{R}$.
Hint: Introducing the complex number $\lambda=a+i b$ with real part $\operatorname{Re}(z)=a$ and imaginary part $\operatorname{Im}(z)=b$, you can use that

$$
A^{k}=\left(\begin{array}{cc}
\operatorname{Re}\left(\lambda^{k}\right) & -\operatorname{Im}\left(\lambda^{k}\right) \\
\operatorname{Im}\left(\lambda^{k}\right) & \operatorname{Re}\left(\lambda^{k}\right)
\end{array}\right), \quad k=1,2, \ldots,
$$

where $\operatorname{Re}\left(\lambda^{k}\right), \operatorname{lm}\left(\lambda^{k}\right)$ denote respectively the real and imaginary parts of the complex number λ^{k}.

d)

Consider the matrix $A=\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right)$, with $a, b \in \mathbb{R}$. Prove that

$$
\exp (A)=e^{a}\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)
$$

e)

Use the matrix exponential to solve the initial value problem

$$
X^{\prime}=A X, \quad X(0)=X_{0}:=\binom{1}{0}, \quad A=\left(\begin{array}{cc}
-2 & -1 \\
1 & -2
\end{array}\right) .
$$

Sketch the solution curve in the phase plane.

f)

Solve the nonautonomous linear system

$$
X^{\prime}=\left(\begin{array}{cc}
-2 & 1 \\
0 & -2
\end{array}\right) X+\binom{e^{-2 t}}{0}, \quad X(0)=X_{0}:=\binom{1}{0}
$$

PROBLEM 3

Consider the nonlinear differential equation
(2) $\quad x^{\prime}=f(x)=x^{2}, \quad x(0)=1$.
a)

Determine the solution $x(t)$ of (2) for $t \in(-\infty, 1)$. What happens with $x(t)$ as $t \uparrow 1$?
b)

Compute the Picard approximations $u_{0}(t), u_{1}(t), u_{2}(t), u_{3}(t)$.
c)

Consider the (scalar) nonlinear differential equation $x^{\prime}=f(t, x)$ with initial data $x(0)=x_{0}$, for $t \in[-a, a], a>0$, where $f(t, x)$ is a function that is continuous in $t \in[-a, a]$ and continuously differentiable in $x \in[-\rho, \rho], \rho>0$. In fact, let us assume

$$
|f(t, x)-f(t, y)| \leq K|x-y|, \quad \forall x, y \in[-\rho, \rho],
$$

uniformly in $t \in[-a, a]$, and

$$
|f(t, x)| \leq M, \quad \forall t \in[-a, a], \forall x \in[-\rho, \rho],
$$

for some positive constants K, M. In what follows, fix $a>0$ such that

$$
a M<\rho, \quad a K<1 .
$$

Prove that the Picard iterations $\left\{u_{k}(t)\right\}_{k=0}^{\infty}$ defined by $u_{0}(t)=x_{0}$ and

$$
u_{k+1}(t)=x_{0}+\int_{0}^{t} f\left(s, u_{k}(s)\right) d s, \quad k=0,1,2, \ldots
$$

converge uniformly to a limit function $u(t)$ by establishing the following two estimates:
(i) $u_{k}(t) \in\left[x_{0}-\rho, x_{0}+\rho\right]$, that is $\left|u_{k}(t)-x_{0}\right| \leq \rho$, for all $t \in[-a, a]$;
(ii) $\left|u_{i}(t)-u_{j}(t)\right| \xrightarrow{i, j \uparrow \infty} 0$, uniformly in $t \in[-a, a]$.

