UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in:	MAT3500/4500 — Topology
Day of examination:	Tuesday December 18th 2012
Examination hours:	09.00-13.00
This problem set consists of 2 pages.	
Appendices:	None
Permitted aids:	None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Each subproblem $(1a, 1b, \ldots, 4b)$ carries the same weight. You may use the results of an earlier subproblem to answer later questions, even if you have not answered the earlier one.

Problem 1

Let \mathcal{T} be the collection of subsets of \mathbb{R} that contain the integers \mathbb{Z} or are empty, i.e.

 $\mathcal{T} = \{ U \subset \mathbb{R} \mid U = \emptyset \text{ or } \mathbb{Z} \subset U \}$

1a

Show that \mathcal{T} is a topology.

We now consider \mathbb{R} with this topology \mathcal{T} .

1b

Show that $K \subset \mathbb{R}$ is compact if and only if K only contains a finite number of nonintegers.

1c

Determine all connected subsets of \mathbb{R} .

Problem 2

2a

Give the definition of a locally compact topological space.

2b

Let X be a compact Hausdorff space, $x \in X$ and $Y = X \setminus \{x\}$ with the subspace topology. Let Y^* be the one-point compactification of Y. Show that Y^* is homeomorphic to X.

2c

Let $S_n \subset \mathbb{R}^2$ be the circle or radius 1/n and center (1/n, 0), X the compact set

$$X = \bigcup_{n=1}^{\infty} S_n$$

and $Z \subset \mathbb{R}^2$ the subset consisting of all lines $\{n\} \times \mathbb{R}$ for $n = 1, 2, \cdots$. Show that the one-point compactification Z^* is homeomorphic to X.

Problem 3

Let $p: E \to B$ be a covering map such that $p^{-1}(b)$ is finite for all $b \in B$.

3a

Give an example where E is a path connected compact Hausdorff space and p is not a homeomorphism. (You can either give an explicit covering map or provide an appropriate figure.)

3b

Is it possible to find an example as in a) with a simply connected B ? Explain your answer.

Problem 4

In this problem $f : X \to Y$ is a quotient map. The *saturation* of a set $A \subset X$ is the set $f^{-1}(f(A))$.

4a

Show that f is a closed map if and only if the saturation of any closed set A also is closed.

4b

Show that if f is a closed map and X a normal space, then so is Y.

END