

$\mathrm{UiO}:$ University of Oslo

Algebra

Helmer Aslaksen

Dept. of Teacher Education \& Dept. of Mathematics
University of Oslo
helmer.aslaksen@gmail.com
www.math.nus.edu.sg/aslaksen/

Roots of quadratic polynomials

- The roots, x_{1} and x_{2}, of a quadratic polynomial, $a x^{2}+b x+c$, satisfy

$$
x_{1}+x_{2}=-\frac{b}{a} \quad \text { and } \quad x_{1} x_{2}=\frac{c}{a}
$$

Since

$$
x_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \quad \text { and } \quad x_{1}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

we get

$$
\begin{gathered}
x_{1}+x_{2}=\frac{-2 b}{2 a}=\frac{-2 b}{2 a} \text { and } \\
x_{1} x_{2}=\frac{(-b)^{2}-\left(\sqrt{b^{2}-4 a c}\right)^{2}}{4 a^{2}}=\frac{4 a c}{4 a^{2}}=\frac{c}{a}
\end{gathered}
$$

Rational roots of polynomial equations

Rational roots of polynomial equations

- If $a_{n} x^{n}+a_{n-1} x^{n-1} \cdots+a_{1} x+a_{0}=0$, where $a_{i} \in \mathbb{Z}$, has a rational root p / q, where $p, q \in \mathbb{Z}$ are relatively prime, then $p \mid a_{0}$ and $q \mid a_{n}$. In particular, if $a_{n}=1$, the root must be an integer.

Rational roots of polynomial equations

- If $a_{n} x^{n}+a_{n-1} x^{n-1} \cdots+a_{1} x+a_{0}=0$, where $a_{i} \in \mathbb{Z}$, has a rational root p / q, where $p, q \in \mathbb{Z}$ are relatively prime, then $p \mid a_{0}$ and $q \mid a_{n}$. In particular, if $a_{n}=1$, the root must be an integer.
- Proof: We have

$$
\begin{aligned}
a_{n}(p / q)^{n}+a_{n-1}(p / q)^{n-1} \cdots+a_{1} p / q+a_{0} & =0 \text { so } \\
a_{n} p^{n}+a_{n-1} p^{n-1} q \cdots+a_{1} p q^{n-1}+a_{0} q^{n} & =0
\end{aligned}
$$

UiO : University of Oslo

Rational roots of polynomial equations

- If $a_{n} x^{n}+a_{n-1} x^{n-1} \cdots+a_{1} x+a_{0}=0$, where $a_{i} \in \mathbb{Z}$, has a rational root p / q, where $p, q \in \mathbb{Z}$ are relatively prime, then $p \mid a_{0}$ and $q \mid a_{n}$. In particular, if $a_{n}=1$, the root must be an integer.
- Proof: We have

$$
\begin{aligned}
a_{n}(p / q)^{n}+a_{n-1}(p / q)^{n-1} \cdots+a_{1} p / q+a_{0} & =0 \text { so } \\
a_{n} p^{n}+a_{n-1} p^{n-1} q \cdots+a_{1} p q^{n-1}+a_{0} q^{n} & =0
\end{aligned}
$$

- This gives us

$$
\begin{gathered}
a_{0} q^{n}=p\left(-a_{n} p^{n-1}-a_{n-1} p^{n-2} q \cdots-a_{1} q^{n-1}\right) \text { and } \\
a_{n} p^{n}=q\left(-a_{n-1} p^{n-1} \cdots-a_{1} p q^{n-2}-a_{0} q^{n-1}\right)
\end{gathered}
$$

This shows that p divides $a_{0} q^{n}$, and since p and q are relatively prime, we must have $p \mid a_{0}$. It follows similarly that $q \mid a_{n}$.

UiO : University of Oslo
$a x^{2}+b x+c$ and sliders 1

- If you enter $a x^{2}+b x+c$ in GeoGebra, it will create sliders. Varying c just moves the graph up and down, but varying a and b makes the graph change in strange ways.
- If you enter $a x^{2}+b x+c$ in GeoGebra, it will create sliders. Varying c just moves the graph up and down, but varying a and b makes the graph change in strange ways.
- The extremum of the parabola occurs when $x=-b /(2 a)$. You can see this either using calculus, or just observing that if there are two real roots, then this is halfway between them. This is also the symmetry axis.
- If you enter $a x^{2}+b x+c$ in GeoGebra, it will create sliders. Varying c just moves the graph up and down, but varying a and b makes the graph change in strange ways.
- The extremum of the parabola occurs when $x=-b /(2 a)$. You can see this either using calculus, or just observing that if there are two real roots, then this is halfway between them. This is also the symmetry axis.
- Varying b makes the symmetry axis move left and right, in opposite direction to the motion of b, but the graph is also moving up and down.
- If you enter $a x^{2}+b x+c$ in GeoGebra, it will create sliders. Varying c just moves the graph up and down, but varying a and b makes the graph change in strange ways.
- The extremum of the parabola occurs when $x=-b /(2 a)$. You can see this either using calculus, or just observing that if there are two real roots, then this is halfway between them. This is also the symmetry axis.
- Varying b makes the symmetry axis move left and right, in opposite direction to the motion of b, but the graph is also moving up and down.
- Varying a makes the graph bend up or down from the line $y=b x+c$, which you get when $a=0$, and increasing $|a|$ makes the graph steeper. However, the graph is both moving up and down and left and right.
- If you enter $a x^{2}+b x+c$ in GeoGebra, it will create sliders. Varying c just moves the graph up and down, but varying a and b makes the graph change in strange ways.
- The extremum of the parabola occurs when $x=-b /(2 a)$. You can see this either using calculus, or just observing that if there are two real roots, then this is halfway between them. This is also the symmetry axis.
- Varying b makes the symmetry axis move left and right, in opposite direction to the motion of b, but the graph is also moving up and down.
- Varying a makes the graph bend up or down from the line $y=b x+c$, which you get when $a=0$, and increasing $|a|$ makes the graph steeper. However, the graph is both moving up and down and left and right.
- When a goes to $0^{ \pm}$, the symmetry axis moves towards $\mp \infty$, and when a goes to ∞, the symmetry axis moves towards the y-axis.

UiO : University of Oslo
$a x^{2}+b x+c$ and sliders 7

UiO: University of Oslo

$a x^{2}+b x+c$ and sliders 8

- The y-value of the extremum is

$$
a\left(\frac{-b}{2 a}\right)^{2}+b \frac{-b}{2 a}+c=c+\frac{a b^{2}-2 a b^{2}}{4 a^{2}}=c-b^{2} /(4 a)
$$

UiO : University of Oslo

$a x^{2}+b x+c$ and sliders 9

- The y-value of the extremum is

$$
a\left(\frac{-b}{2 a}\right)^{2}+b \frac{-b}{2 a}+c=c+\frac{a b^{2}-2 a b^{2}}{4 a^{2}}=c-b^{2} /(4 a)
$$

- We can write this as either $c-a(-b /(2 a))^{2}$ or $c-b / 2(-b /(2 a))$, which shows that the extremum lies on the graph of the parabola $y=c-a x^{2}$ when we vary b and on the graph of the line $y=c+b / 2 x$ when we vary a.

UiO : University of Oslo
$a x^{2}+b x+c$ and sliders 10

- Notice how the extremum jumps from ∞ to $-\infty$ when a crosses 0 , since we can think of the line as going through a point of infinity that links the two "ends" of the line.
- Notice how the extremum jumps from ∞ to $-\infty$ when a crosses 0 , since we can think of the line as going through a point of infinity that links the two "ends" of the line.
- Notice also that when we vary a, the extremum moves on a curve determined by b and c, while when we vary b, the extremum moves on a curve determined by a and c. This helps explain why we get a parabola in one case and a straight line in the other case.

UiO : University of Oslo
 $a x^{2}+b x+c$ and sliders 13

- Notice how the extremum jumps from ∞ to $-\infty$ when a crosses 0 , since we can think of the line as going through a point of infinity that links the two "ends" of the line.
- Notice also that when we vary a, the extremum moves on a curve determined by b and c, while when we vary b, the extremum moves on a curve determined by a and c. This helps explain why we get a parabola in one case and a straight line in the other case.
- When we vary c, the extremum moves on a curve determined by b and c, but since the x-coordinate is fixed, it is simply a vertical line.

UiO : University of Oslo
$a x^{2}+b x+c$ and sliders 14

UiO : University of Oslo $a x^{2}+b x+c$ and sliders 15

- Another way to see this is to observe that when $x=-b /(2 a)$, then $b=-2 a x$, so $f(x)=a x^{2}-(2 a x) x+c=c-a x^{2}$, as we saw above.
- Another way to see this is to observe that when $x=-b /(2 a)$, then $b=-2 a x$, so $f(x)=a x^{2}-(2 a x) x+c=c-a x^{2}$, as we saw above.
- We could also write $a=-b /(2 x)$, so $f(x)=-b x^{2} /(2 x)+b x+c=b / 2 x+c$, as we also saw above.
- Another way to see this is to observe that when $x=-b /(2 a)$, then $b=-2 a x$, so $f(x)=a x^{2}-(2 a x) x+c=c-a x^{2}$, as we saw above.
- We could also write $a=-b /(2 x)$, so $f(x)=-b x^{2} /(2 x)+b x+c=b / 2 x+c$, as we also saw above.
- This also helps explain why we get a parabola in one case and a straight line in the other case.

Alternative ways of parameterizing parabolas

- By completing the square, you can also write $a x^{2}+b x+c$ as $a(x+p)^{2}+q$. If you enter this in GeoGebra and move the sliders, everything is very simple. Varying a simply makes the graph point up or down, and changes the steepness, while varying p and q makes the graph shift horizontally and vertically.

