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Cauchy’s false theorem

▶ In 1821 Augustin-Louis Cauchy (1789–1857) published a
proof that a convergent sum of continuous functions is
always continuous. In 1826 Niels Henrik Abel (1802–1829)
gave a counterexample involving Fourier series.

▶ Cauchy’s result about series is equivalent to claiming that
the limit of a sequence of continuous functions must be
continuous. This is true if we require what is known as
uniform convergence instead of ordinary pointwise
converegence.

▶ Cauchy was one of the pioners in making analysis
rigorous, but even he did not have a clear definition of
function, convergence and continuity, and that is why he
ended up with a false theorem.
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▶ A simple counterexample is fn(x) = xn for x ∈ [0,1], where

f (x) = lim
n→∞

fn(x) =

{
0, if 0 ≤ x < 1,
1, if x = 1.

▶ The reason why the limit is not continuous, is that the rate
of convergence becomes slower and slower as we move
towards 1. If the rate of convergence is uniform, the
theorem can be shown to hold.



A non-analytic function

▶ In 1797 Joseph-Louis Lagrange (1736–1813) wrote a book
called “Théorie des fonctions analytiques”, where he tried
to base analysis on the concept of power series. In 1823
Cauchy constructed an example of a smooth function, i.e.,
a function that has derivatives of all orders, whose Taylor
series does not converge to the function, namely

g(x) =

{
e−1/x2

, if x ̸= 0,
0, if x = 0.
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▶ We will consider the somewhat simpler function

f (x) =

{
e−1/x , if x > 0,
0, ifx ≤ 0.

▶ We will show that for all n, f n(0) = 0, which implies that the
Taylor series of f is constantly equal to 0, and therefore
does not converge to f .

▶ Based on Lagrange’s terminology, we call a function that is
the limit of its Taylor series an analytic function. So f is an
example of a non-analytic function.



e−1/x is non-analytic

▶ We can prove by induction that for any nonnegative integer
n,

f (n)(x) =


pn(x)
x2n f (x) if x > 0,

0 if x ≤ 0,

where pn(x) is a polynomial of degree n − 1 for n > 0 and
p0(x) = 1.

▶ We can also prove that for any nonnegative integer m,

lim
x→0

e−1/x

xm = 0.



e−1/x is non-analytic

▶ To see this, we use the Taylor series of ex and observe that
for every natural number m (including zero)

1
xm = x

(1
x

)m+1
≤ (m + 1)!x

∞∑
n=0

1
n!

(1
x

)n
=

(m + 1)!x exp
(1

x

)
, x > 0,

because all the terms in series with n ̸= m + 1 are positive.
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▶ Therefore,

0 ≤ lim
x→0+

e−1/x

xm ≤ lim
x→0+

e−1/x(m + 1)!xe1/x =

(m + 1)! lim
x→0+

x = 0.

▶ This implies that for n ≥ 0

f n+1(0) = lim
x→0+

f (n)(x)− f (n)(0)
x − 0

= lim
x→0+

pn(x)
x2n+1 e−1/x = 0.



A continuous function that is nowhere differentiable

▶ In 1872 Karl Weierstrass (1815–1897) gave an example of
a continuous function that is nowhere differentiable using
Fourier series. We will instead give an example given by
Teiji Takagi (Ø(�» ) (1875–1960) in 1901, which is
sometimes called the blancmange curve (named after the
dessert).

▶ Set h(x) = min
n∈Z

|x − n|, hn(x) = h(2nx)/2n and

f (x) =
∑∞

n=0 h(2nx)/2n.
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The graph of h1.
The graph of h1 (dotted), h2
and h1 + h2.

▶



A continuous function that is nowhere differentiable 2

The graph of h2 (dotted), h3
and h1 + h2 + h3.

The graph of h3 (dotted), h4
and h1 + h2 + h3 + h4.

▶
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▶
The graph of h.

▶ It can be shown that the series converges and that the sum
is continuous. It is clear that h is not differentiable at points
of the form a/2b. Using the sawtooth shape of the curve, it
can be shown that the function is not differentiable
anywhere!


