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Limits in high school mathematics

▶ To differentiate polynomials, you only need algebra to
compute limits. Polynomial differentiation is polynomial
division.

▶ limx→0
sin(x)

x = 1.
▶ Definition of e.
▶ The Fundamental Theorem of Calculus
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Polynomial differentiation is polynomial division

▶ Let p(x) be a polynomial. Then

p′(x) = lim
h→0

p(x + h)− p(x)
h

.

We now set q(h) = p(x + h)− p(x), which is a polynomial
in h. Since q(0) = p(x)− p(x) = 0, we can write
q(h) = hr(h), and then

p′(x) = lim
h→0

q(h)
h

= lim
h→0

hr(h)
h

= lim
h→0

r(h) = r(0).
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Definition of e 5

▶ The product is hard to analyze, since the number of factors
increase, while the factors themselves decrease. However,
the binomial formula converts sn to a sum of n terms.

▶ Since all the terms in the parenthesis are positive, we have
now written sn as a sum of n positive terms. When we go
from sn to sn+1, terms of the form (1 − k/n) will change to
(1 − k/(n + 1)), which is larger. So the first n terms
increase, and we also add another positive term. It is
therefore clear that sn is increasing.
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▶ Consider the series
∑∞

k=0
1
k! with partial sums

tn = 1 +
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+
1
2!

+
1
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+ · · ·+ 1
n!

.

▶ Since tn is obtained from sn by removing the parenthesis,
and all the terms in the parenthesis are less than 1, we see
that sn ≤ tn. Since going from tn to tn+1 just adds a positive
term, we see that tn is also increasing.

▶ Since

n! = 1 · 2 · 3 . . . n > 1 · 2 · 2 . . . 2 = 2n−1,

we have

sn ≤ tn < 1 + 1 +
1
2
+

1
22 + · · ·+ 1

2n−1 < 3.

▶ It follows that sn is bounded and increasing, so e exists
and e < 3.
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The Fundamental Theorem of Calculus 1

▶ TFC can be stated in two ways. If f (x) is continuous on
[a,b], then

A(x) =
∫ x

a
f (t)dt

is differentiable and A′(x) = f (x).
▶ This can be written as

FTC Version 1:
d
dx

∫ x

a
f (t)dt = f (x)

and shows that differentiation and integration are inverse
operations.
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The Fundamental Theorem of Calculus 4

▶ Notice that we should not write

A(x) =
∫ x

a
f (x)dx

but use a dummy variable, t , for the integration. Otherwise,
we would have to write for instance

A(b) =
∫ b

a
f (b)db,

which does not make sense.
▶ Think of the dummy variable as a “hidden", local variable

that is only used for the integration, and x as a global
variable that is “seen" by the left hand side.
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The Fundamental Theorem of Calculus 7

▶ Greek, Islamic, Chinese and Indian mathematicians had
throughout the ages solved accumulation problems
involving area and volume using ad hoc integration
techniques. The reason why this theorem is fundamental,
is because it shows that accumulations problems can be
solved using anti-differentiation.

▶ The FTC changes integration from a bag of tricks to a
method that works as long as the function has an
anti-derivative.



The Fundamental Theorem of Calculus 8

▶ Greek, Islamic, Chinese and Indian mathematicians had
throughout the ages solved accumulation problems
involving area and volume using ad hoc integration
techniques. The reason why this theorem is fundamental,
is because it shows that accumulations problems can be
solved using anti-differentiation.

▶ The FTC changes integration from a bag of tricks to a
method that works as long as the function has an
anti-derivative.



The Fundamental Theorem of Calculus 9

▶ Greek, Islamic, Chinese and Indian mathematicians had
throughout the ages solved accumulation problems
involving area and volume using ad hoc integration
techniques. The reason why this theorem is fundamental,
is because it shows that accumulations problems can be
solved using anti-differentiation.

▶ The FTC changes integration from a bag of tricks to a
method that works as long as the function has an
anti-derivative.



The Fundamental Theorem of Calculus 10

▶ To prove the FTC, we observe that A(x + h)− A(x) is the
shaded area in the figure, and that if h ≈ 0, then the area is
close to the vertically shaded rectangle. Hence

A′(x) = lim
h→0

A(x + h)− A(x)
h

≈ lim
h→0

f (x)h
h

= lim
h→0

f (x) = f (x).
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The Fundamental Theorem of Calculus 12

▶ We can also state the FTC in a different form by changing
the order of the two operations, i.e., we want to show that
the integral of the derivative of a function is the function.
We therefore consider

F (x) =
∫ x

a

d
dt

f (t)dt ,

and we want to show that

FTC Version 2:
∫ x

a

d
dt

f (t)dt = f (x)− f (a).

▶ The reason why we get f (x)− f (a) and not just f (x) is
because F (x) is defined in terms of a and F (a) = 0.
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The Fundamental Theorem of Calculus 15

▶ The reason why consider the function F (x) and not just the
definite integral from a to b is because we want to use the
first version of the FTC to prove this version.

▶ We know from the first version of the FTC that
F ′(x) = f ′(x), so F (x) = f (x) + C for some constant C, but
since F (a) = f (a) + C = 0, we get that F (x) = f (x)− f (a).
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Product rule 1

▶ Consider a rectangle of length f (x) and height g(x). The
derivative of the product A(x) = f (x)g(x) is the rate of
change of the area of the rectangle. We see from the figure
that f (x +∆x)g(x +∆x)− f (x)g(x) splits into three parts.
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Product rule 3

▶ We can also split it into three parts algebraically

f (x +∆x)g(x +∆x)− f (x)g(x) = (f (x +∆x)− f (x))g(x)
+ f (x)(g(x +∆x)− g(x))

+ (f (x +∆x)− f (x))(g(x +∆x)− g(x)),

and it follows that

A′(x) = lim
∆x→0

f (x +∆x)− f (x)
∆x

g(x)

+ f (x) lim
∆x→0

g(x +∆x)− g(x)
∆x

+ lim
∆x→0

f (x +∆x)− f (x)
∆x

(g(x +∆x)− g(x))

= f ′(x)g(x) + f (x)g′(x) + f ′(x) · 0 = f ′(x)g(x) + f (x)g′(x).
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Product rule 5

▶ The growth of the area is measured by the growth along
the top, which is given by the rate of change of the height
times the length plus the growth to the right, which is given
by the rate of change of the length times the height.

▶ We can ignore the small rectangle in the top right, since
both the length and the height goes to zero.
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The derivative of sin x 1

▶ To find the derivative of sin x , we consider

lim
h→0

sin(x + h)− sin x
h

= lim
h→0

sin x cosh + cos x sinh − sin x
h

= lim
h→0

sinh
h

cos x + sin x lim
h→0

cosh − 1
h

.

▶ We want to show that the first limit equals 1 and the
second equals 0.
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The derivative of sin x 4

▶ To find limx→0
sin x

x we consider the figure and observe that
for small x , the height of the triangle, which equals sin x , is
approximately the same as the arc of the circle, which
equals x , since we use radians. It follows that the fraction
goes to 1.
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The derivative of sin x 6

▶ To make this more formal, we observe that the area of the
triangle ABC is smaller than the area of the sector ABC,
which is smaller than the area of the triangle ABD, which
gives us

sin x/2 < x/(2π)π < tan x/2,

and after multiplying by 2 cos x/ sin x we get

cos x < cos x
x

sin x
< 1.

Since cos x goes to 1, this shows that the fraction also
goes to 1.
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The derivative of sin x 8

▶ Since

cos x − 1
x

=
(cos x − 1)(cos x + 1)

x(cos x + 1)
=

cos2 x − 1
x(cos x + 1)

=

− sin2 x
x(cos x + 1)

=
sin x

x
− sin x

cos x + 1
,

we see that limx→0
cos x−1

x = 1 · 0 = 0.
▶ This shows that the derivative of sin x equals cos x . Notice

that we cannot use L’Hôpital’s rule to compute this limit,
since we need this limit to find the derivative of sin.
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Linear approximation 1

▶ A basic idea of calculus is to approximate a function f (x)
with its tangent line at a point x = a,

y = f (a) + f ′(a)(x − a).

▶ As an example, let us try to estimate
√

10 using linear
approximation around x = 9. If f (x) =

√
x , then

f ′(x) = 1/(2
√

x), so
√

10 = f (10) ≈ f (9) + f ′(9)(10 − 9) = 3 + 1/6 ≈ 3.167.

We have
√

10 ≈ 3.162, so it is a very good approximation.
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L’Hôpital’s Rule

▶ Let f and g be continuous on an interval containing a, and
assume f and g are differentiable on this interval with the
possible exception of the point a. If f (a) = g(a) = 0 and
g′(x) ̸= 0 for all x ̸= a, then

lim
x→a

f ′(x)
g′(x)

= L =⇒ lim
x→a

f (x)
g(x)

= L,

for L ∈ R ∪∞.
▶ The idea behind the proof is to replace the functions with

their tangent lines. Since f (a) = g(a) = 0, we have

f (x)
g(x)

≈ f (a) + f ′(a)(x − a)
g(a) + g′(a)(x − a))

=
f ′(a)

g′(a))
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Continuity

▶ f : U → R is continuous at a ∈ U if limx→a f (x) = f (a) and
continuous on U if it is continuous at all points in U.

▶ Some people say that f is continuous if and only if we can
draw the graph of f without lifting the pen. However,
f (x) = 1/x is continuous on U = R− {0}.
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Continuity and differentiability

▶ Can you give an example of a function that is continuous
but not differentiable?

▶ Can you give an example of such a function that has a
tangent?

▶ Differentiability does not mean having a tangent line, but
having a tangent line with a finite slope.

▶ A function with a vertical tangent is not differentiable. How
do you construct such a function?

▶ Invert a function with a horizontal tangent, so take for
instance f (x) = x1/3.
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Source of counterexamples 1

▶

fn(x) =

{
xn sin(1/x) if x ̸= 0,
0 if x = 0.

▶ f0 is not continuous, since limx→0 f0(x) does not exist.
However, limx→0 f1(x) = 0, so f1 is continuous.
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Can you draw the graph of a continuous function?

▶ Do you tell your students that a function is continuous if
you can draw the graph without lifting the pen?

▶ Is 1/x continuous?
▶ Is it true if you assume that the domain is connected?
▶ How long is the graph of x sin(1/x)?
▶ Set xi = 1/ ((i + 1/2)π). Then f1(xi) = (−1)i/((i + 1/2)π).
▶ Join the points (xi , f1(xi)) with lines, starting with i = 1 and

ending at i = n. The distance between (xi , f1(xi)) and
(xi+1, f1(xi+1)) is bigger than the vertical distance between
them, which is bigger than
2|f1(xi+1)| = 2/((i + 1 + 1/2)π) > 2/((i + 2)π).

▶ But since the harmonic series
∑

1/i diverges, which can
be shown without calculus, the length of the lines from
(x1, f1(x1)) to (xn, f1(xn) will go to infinity, and it follows that
the arc length of f1 is infinite.
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More counterexamples 1

▶

f (x) =

{
x2 sin(1/x) if x ̸= 0,
0 if x = 0.

▶

f ′(x) =

{
2x sin(1/x)− cos(1/x) if x ̸= 0,
0 if x = 0.

▶ Notice that limx→0 f ′(x) does not exist, so f ′ is not
continuous!
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More counterexamples 5

▶ There is a theorem due to Darboux, which says that a
derivative has the intermediate value property.

▶ This implies that a derivative cannot have a jump
discontinuity, so that if f is not continuously differentiable,
then the discontinuity must be an essential discontinuity,
i.e., at least one one-sided limit does not exist.
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Monotonicity 1

▶ Mean Value Theorem: Assume that f is differentiable on
(a,b) and continuous on [a,b]. Then there is c ∈ (a,b)
such that

f (b)− f (a)
b − a

= f ′(c).

▶ f ′ > 0 on (a,b) =⇒ f is strictly increasing on (a,b).
▶ f ′ ≥ 0 on (a,b) =⇒ f is increasing on (a,b).
▶ f ′ ≥ 0 on (a,b) ⇐= f is increasing on (a,b).
▶ f (x) = x3 shows that f ′ ≥ 0 on (a,b) ⇍= f is strictly

increasing on (a,b).
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Monotonicity 7

▶ If f ′ is positive on (a,b), then f is increasing on (a,b). But
what if we only know that f ′(c) > 0? Can we say that f is
increasing on an interval around c?

▶ f (x) = x + 2x2 sin(1/x),
f ′(x) = 1 + 4x sin(1/x)− 2 cos(1/x) is both positive and
negative in every neighborhood of 0.
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Extreme point

▶ If c is an extreme point and f ′(c) exists, then f ′(c) = 0.
▶ First Derivative Test: If f ′ exists around c, and f ′ changes

sign at c, then c is an extreme point.
▶ Second Derivative Test: If f ′(c) = 0 and f ′′(c) is positive

(negative), then c is a minimum (maximum).
▶ We will now see that the converse to the First Derivative is

not always true.
▶ f (x) = x2(1 + 1/2 sin(1/x)),

f ′(x) = 2x + x sin(1/x)− 1/2 cos(1/x).

▶ The reason for the 1/2 factor, is that x2 + x2 sin(1/x)) has
infinitely many zeros, which makes 0 a non-isolated
extremum.
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Point of inflection 1

▶ We say that c is a point of inflection if f has a tangent line
at c and f ′′ changes sign at c. (Some people only require
that f should be continuous at c.)

▶ f (x) = x3 has f ′(0) = 0, but 0 is not an extremum, but a
point of inflection.

▶ f (x) = x3 + x shows that f ′ does not have to be 0 at a point
of inflection.
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Point of inflection 5

▶ f (x) = x1/3 has a point of inflection at 0, has a tangent line
at 0, but f ′(0) and f ′′(0) do not exist. (Vertical tangent line.
Just bend a bit, and you get a point of inflection.)

▶

f (x) =

{
x2 if x ≥ 0,
−x2 if x < 0,

has a point of inflection at 0, and f ′(0) exists, but f ′′(0)
does not exist. (First derivatives match, so we get a
tangent line, but second derivatives do not match.)
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Point of inflection 8

1. If c is a point of inflection and f ′′(c) exists, then f ′′(c) = 0.
2. If c is a point of inflection, then c is an isolated extremum

of f ′.
3. If c is a point of inflection, then the curve lies on different

sides of the tangent line at c.
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Point of inflection 12

▶ Proof of 3: We use MVT go get x1 between c and x with

f (x)− f (c)
x − c

= f ′(x1),

or
f (x) = f (c) + f ′(x1)(x − c).

▶ We now use MVT again to get x2 between c and x1 with

f ′(x1)− f ′(c)
x1 − c

= f ′′(x2),

or
f ′(x1) = f ′(c) + f ′′(x2)(x1 − c).

▶ Combining this, we get

f (x) = f (c) + f ′(x1)(x − c)
= f (c) + f ′(c)(x − c) + f ′′(x2)(x − c)(x1 − c).



Point of inflection 13
▶ Proof of 3: We use MVT go get x1 between c and x with

f (x)− f (c)
x − c

= f ′(x1),

or
f (x) = f (c) + f ′(x1)(x − c).

▶ We now use MVT again to get x2 between c and x1 with

f ′(x1)− f ′(c)
x1 − c

= f ′′(x2),

or
f ′(x1) = f ′(c) + f ′′(x2)(x1 − c).

▶ Combining this, we get

f (x) = f (c) + f ′(x1)(x − c)
= f (c) + f ′(c)(x − c) + f ′′(x2)(x − c)(x1 − c).



Point of inflection 14
▶ Proof of 3: We use MVT go get x1 between c and x with

f (x)− f (c)
x − c

= f ′(x1),

or
f (x) = f (c) + f ′(x1)(x − c).

▶ We now use MVT again to get x2 between c and x1 with

f ′(x1)− f ′(c)
x1 − c

= f ′′(x2),

or
f ′(x1) = f ′(c) + f ′′(x2)(x1 − c).

▶ Combining this, we get

f (x) = f (c) + f ′(x1)(x − c)
= f (c) + f ′(c)(x − c) + f ′′(x2)(x − c)(x1 − c).



Point of inflection 15
▶ Proof of 3: We use MVT go get x1 between c and x with

f (x)− f (c)
x − c

= f ′(x1),

or
f (x) = f (c) + f ′(x1)(x − c).

▶ We now use MVT again to get x2 between c and x1 with

f ′(x1)− f ′(c)
x1 − c

= f ′′(x2),

or
f ′(x1) = f ′(c) + f ′′(x2)(x1 − c).

▶ Combining this, we get

f (x) = f (c) + f ′(x1)(x − c)
= f (c) + f ′(c)(x − c) + f ′′(x2)(x − c)(x1 − c).



Point of inflection 16

▶ The tangent line to f (x) at c is t(x) = f (c) + f ′(c)(x − c),
so the distance between f and the tangent is
f ′(x2)(x − c)(x1 − c).

▶ Since (x1 − c) and (x1 − c) have the same sign, their
product is positive. But f ′′(x) changes sign at c, so f (x) will
lie on different sides of the tangent at c.
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Point of inflection 19

▶ Converse to 1 is false: f (x) = x4 has f ′′(0) = 0, but
f ′′(x) ≥ 0.

▶ Converse to 2 is false: f (x) = x3 + x4 sin(1/x) has

f ′(x) = 3x2 − x2 cos(1/x) + 4x3 sin(1/x)

= x2(3 − cos(1/x) + 4x sin(1/x)) ≥ 0

in a neighborhood of 0, so 0 is an isolated minimum of
f ′(x). We have f ′′(0) = 0, but
f ′′(x) = 6x − sin(1/x)− 6x cos(1/x) + 12x2 sin(1/x) does
not change sign.

▶
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Point of inflection 23

▶ We need to “integrate” the example 2x2 + x2 sin(1/x).
Since the derivative of 1/x is −1/x2, we try

f (x) = x3 + x4 sin(1/x),

f ′(x) = 3x2 − x2 cos(1/x) + 4x3 sin(1/x)

= x2(3 − cos(1/x) + 4x sin(1/x)).

▶ The first two terms give us the shape we want, and the last
terms is so small that we can ignore it.
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Point of inflection 26

▶ Converse to 3 is false:
f (x) = 2x3 + x3 sin(1/x) = x3(2 + sin(1/x)) lies below the
tangent (y = 0) on one side and above the tangent on
another, but
f ′′(x) = 12x + 6x sin(1/x)− 4 cos(1/x)− (1/x) sin(1/x)
does not change sign, since when x is small, the last term
will be oscillate wildly.

▶ The cubic terms gives the desired shape of the curve, and
since the derivative of 1/x is −1/x2, we will get a term of
the form (1/x) sin(1/x) in f ′′(x), which will make it oscillate
wildly.

▶
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