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Basic Concepts

There are many situations in life where you

want to encode messages, so that even if

they are seen, they will not be understood

by other people than then intended recipient.

The study of such encodings and decodings

is called cryptography.

The message you want to hide is called the

plaintext, and the act of encoding it is called

encryption or enciphering. The encoded plain-

text is called the crypttext or the ciphertext,

and the act of decoding it is called decryption

or deciphering. The encryption system, also

called a cipher, uses an encryption key, KE,

and a decryption key, KD, for the encoding

and decoding process.
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Substitution Ciphers

One of the most common ciphers is sub-

stitution. This scheme is the one used in

the Sherlock Holmes story “Mystery of the

Dancing Men”. The idea is straightforward:

choose a rearrangement of the letters of the

alphabet, and replace each letter in the plain-

text by its corresponding one.

a b c d efg h i j k l mnop q r s t u vwx y z
THEQUICKBROWNFXJMPSVLAZYDG

The sentence “please do not read this” then

becomes

JWUTSU QX FXV PUTQ VKBS
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More About Substitution Ciphers

Note that our alphabet contains a space, which

corresponds to a space in our key. We didn’t

need to do this, but it left the message in

words of the same length. This, of course,

makes the message easier to guess. Also, no-

tice that we ignored case, i.e, “A” and “a”

are the same. We could have distinguished

between upper and lower case, in which case

we would need to use a 53 letter alphabet

and a 53 letter key.

The usual way to break such a code is a com-

bination of frequency analysis, that is, know-

ing that the most commonly occurring letter

in the English language is “E”, followed by

“T”, plus a bit of trial and error. Leaving

the spaces between words helps the cracker

greatly.
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The Caesar Cipher

A variation on the arbitrary permutation dis-

cussed above is the Caesar cipher, named af-

ter Julius Caesar, who supposedly invented it

himself. Here we convert our alphabet to nu-

meric equivalents, say A = 0, B = 1, and so

on, add an offset to each numeric equivalent

(Caesar used 3), then re-encode the num-

bers as letters. For example, Caesar would

replace A with D, B by E, and Z by C.
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Public Key Cryptography

All of the ciphers so far discussed are sym-

metric encryption routines, also called secret

key ciphers. If you know the key used to en-

code the message, you can decrypt the mes-

sage without too much work.

This was true of all crypto systems up until

the mid 1970’s: knowledge of how to encode

a message allowed one also to decipher it.

However, in 1976, W. Diffie and M. Hellman

invented public key cryptography. In a public

key system, someone who knows how to en-

cipher a message cannot determine how to

decipher the message without a prohibitively

large computation. It is important to real-

ize that there may be a procedure for doing

so, but to carry out this process would take a

prohibitively long time, say, hundreds of years

on the fastest known computers.
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Why Public Key Cryptography?

Since knowledge of the encoding key KE does

not give information about the decoding key

KD, the encoding key KE can be made public

(hence the name “public key”). This allows

anyone to encode messages that only the re-

cipient can decode. For example, suppose

you want to make a credit card purchase over

the Internet. Data sent across the Internet

unencrypted is not secure. However, if the

merchant provides a public key, you can en-

crypt your credit card number and transmit

it without worry. Only the merchant can de-

crypt the message, even though anyone may

send one.
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Authentication

Another feature of public key cryptography

is authentication. In order to digitally sign a

message, I could append my name encrypted

with my deciphering key. The recipient can

then decode it using my enciphering key. Then

anyone can check that I was the actual sender,

because only I could have encoded my name

using my deciphering key. This feature is

commonly used to digitally sign e-mail by

software such as PGP.
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Implementation

Public key cryptography is very computation-

ally intensive, so typically its use is limited to

allow for the secure transmission of a secret

key; this secret key is then used to encrypt

the rest of the message using a symmetric

encryption method such as DES (Data En-

cryption Standard).

A common public key system in current use is

RSA, named for its inventors: Rivest, Shamir

and Adelman.
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Some Number Theory

Most public key systems rely on number the-

oretic results. Before we can discuss the im-

plementation of one, we need to quickly go

over the necessary background.

Two numbers are said to be relatively prime

if their greatest common divisor is 1.

How can we determine the gcd of two num-

bers? If the numbers are not too large, just

looking at their factors does the trick.

gcd(138,126) = 6

since 138 = 2 · 3 · 23 and 126 = 2 · 3 · 2 · 7.

Theorem 1 Let a and b be two positive in-

tegers. Then there are integers x and y so

that ax+ by = gcd(a, b).
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Modular Arithmetic

Given three integers a, b and m, we say that

a is congruent to b modulo m and write

a ≡ b mod m if a− b is divisble by m.

11 ≡ 5 mod 3 since 11− 5 = 6 = 2 · 3.

We denote the set of integers modulo n as

Zn. That is,

Zn = {0,1,2, . . . , n− 1 }.

If r is such that ar ≡ 1 mod m, then r is called

the multiplicative inverse of a.

Theorem 2 Let a and n be integers, with

n ≥ 2. Then a has a multiplicative inverse

modulo n if and only if gcd(a, n) = 1.

2 · 2 = 4 ≡ 1 mod 3, while 2x ̸≡ 1 mod 4 for

any x.
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Fermat’s Little Theorem

Theorem 3 (Fermat’s Little Theorem, 1640)

Let p be a prime. Any integer a satisfies

ap ≡ a mod p

and any integer a not divisible by p satisfies

ap−1 ≡ 1 mod p.

The second part follows from the first, since

if a is not divisible by p, then a and p are

relatively prime, so a is invertible mod p, and

we can divide by a.
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Euler’s ϕ function

When n is a positive integer, we define ϕ(n)

to be the number of positive integers less

than or equal to n that are relatively prime to

n. If p is prime, then ϕ(p) = p−1, and if a and

b are relatively prime, then ϕ(ab) = ϕ(a)ϕ(b).

It can be shown that

ϕ(n) = n
∏
p|n

(1− 1/p).

We now come to Euler’s generalization of

Fermat’s result. This result is the central

idea underlying the RSA public key cryptosys-

tem.

Theorem 4 (Euler, 1750) Let a and n be

relatively prime integers, with n ≥ 2. Then

aϕ(n) ≡ 1 mod n.

Notice that if n = p, we get Fermat’s Theo-

rem.
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RSA

If you know that n = pq, then ϕ(n) = (p −
1)(q − 1), but in general, calculating ϕ(n) is

as hard as factoring n, which, for very large

n (say, 200 digits), is very hard indeed. This

is the basic fact behind the RSA public key

system.

To set up the system, we pick at random

two large primes p and q, of about 100 digits

each. We then set n = pq so ϕ(n) = (p −
1)(q − 1). We also pick some other large

number e < ϕ(n), which is relatively prime to

ϕ(n). We make the numbers (n, e) public —

these form the key needed for encoding. We

also compute the multiplicative inverse d of

e. Then de−yϕ(n) = 1. The number d is the

part of the key we keep private.
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RSA: How?

To encode a message: The sender divides

the message up into blocks of equal length

and to each block assigns an integer M with

0 < M < n. For each block of plaintext, the

sender transmits m ≡ Me mod n.

To decode the message: For each unit m

of the crypttext received, the recipient com-

putes M ≡ md mod n.
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RSA: Why?

md ≡ Med ≡ M1+yϕ(n) ≡ M(My)ϕ(n) ≡ M.

If gcd(M,n) = 1, the last step follows from

Euler’s Theorem. It turns out that it is true

in general.
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RSA: Example Encoding

We choose p = 29 and q = 53. Then n =
pq = 1537 and ϕ(n) = (p− 1)(q− 1) = 1456.
We then choose e = 47, which is prime, but
doesn’t divide 1456. Hence gcd(47,1456) =
1 and the encryption key is (1537,47).

Suppose we want to send “NO WAY”. We
set space: 00, A: 01, B: 02 etc. This gives

141500230125.

Since n = 1537, we break the plaintext into
block of three digits, so we get

141 500 230 125

If you use a computer, you can check that

14147 ≡ 658, 50047 ≡ 1408,

23047 ≡ 1250, 12547 ≡ 1252 mod 1537.

The ciphertext is therefore

0658140812501252.

Notice that we use blocks of four digits, since
n = 1537.
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RSA: Example Decoding

To decode, we need to know that if we set

d = 31, we get de = 47 · 31 ≡ 1 mod 1456.

This is easy to compute if you know ϕ(n) =

(p−1)(q−1) = 1456, but if you only know n

and not that n = pq, then you cannot com-

pute ϕ(n) and d. If you use a computer, you

can check that

65831 ≡ 141, 140831 ≡ 500,

125031 ≡ 230, 125231 ≡ 125 mod 1537.

This gives us back

141500230125.
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