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What is this about?
▶ Q1: Why is 0.999 . . . = 0.9 = 1?
▶ Q2: Consider 1/2 = 0.5, 1/3 = 0.3 and 1/6 = 0.16.
▶ The first has a finite, terminating decimal expansion. The

second has a repeating block that starts right after the
decimal point, while the third has a finite part before the
repeating block.

▶ We will see that any rational number will have a decimal
expansion of one of these three types, and that the type
only depends on the numerator, so we will only consider
unit fractions of the form 1/n. Can you tell which type 1/n
will be?

▶ Q3: How does the length of the repeating block depend on
n?

▶ Notice how 1/7 = 0.142857 has 7 − 1 = 6 digits in the
repeating block, while 1/3 = 0.3 has 1, and not 3 − 1 = 2
digits in the repeating block.

▶ Q4: Is there a pattern in 1/7 = 0.142857?



Why is this interesting?

▶ This is a topic I discuss in my course on “School
Mathematics from an Advanced Viewpoint” at the
University of Oslo.

▶ The results are classical, but not well-known.
▶ The questions are easy to ask, but difficult to answer.
▶ Students might ask you about this, and you should know

how to answer it.
▶ You may use this as an exploratory exercise.
▶ It gives an interesting application of number theory.
▶ It is a good motivation for why students need to understand

long division.



Why is 0.999 . . . = 1? 1

▶ We can multiply 1/3 = 0.3 by 3 and get

3 · 1/3 = 1 and 3 · 0.3 = 0.9.

▶ We can also write

x = 0.9,

10x = 9.9,

9x = 10x − x = 9.9 − 0.9 = 9,
x = 1.



Why is 0.999 . . . = 1? 2

▶ Since
∑∞

k=0 xk = 1/(1 − x) for |x | < 1, we have

0.9 = 9(0.1 + 0.01 + 0.001 + · · · )
= 9(0.1 + 0.12 + 0.13 + · · · )

= 9
∞∑

k=1

0.1k = 9 · 0.1
∞∑

k=0

0.1k

= 0.9
1

1 − 0.1
=

0.9
0.9

= 1.



Why is 0.999 . . . = 1? 3

▶ It is important to point out that x = x0.d1d2 . . . is the limit of
xn = x0.d1d2 . . . dn. It is not a finite decimal number.

▶ Most people will agree that the sequence 0.9,0.99, . . .
approaches 1, but that is exactly what 0.9 = 1 means.



Why is 0.999 . . . = 1? 4

▶ Finally, we can argue that they have to be equal, since if
they were not equal, we could find some number between
them. However, there is no way to put any number
between them.

▶ Similarly, we can show that

a.a1a2 . . . an = a.a1a2 . . . (an − 1)9,

where ai ∈ {0, . . . ,9}, an ̸= 0 and a ∈ Z. For instance

3.14 = 3.139 and − 3.14 = −3.139.



Why is 0.999 . . . = 1? 5

▶ We see that every finite decimal expansion can also be
written as an infinite decimal expansion.

▶ There is only exception one, namely 0.
▶ One way to understand why 0 is exceptional is because for

positive numbers, the infinite expansion “looks” smaller,
wile for negative numbers, the infinite expansion “looks”
bigger. So it is not surprising that 0 is a singular case.



Decimal expansion 1

Theorem
A number is rational if and only if the decimal expansion is finite
or repeating.

▶ Proof: We will for simplicity assume that 0 < x < 1.
⇐= : Assume first that x has a finite decimal expansion.
Then

x = 0.a1a2...an =
a1a2...an

10n ,

which is a fraction of integers.



Decimal expansion 2

▶ Assume now that x has a repeating decimal expansion.
We multiply by a power of 10 so that the decimal
expansion of 10sx starts repeating right after the decimal
point. As an example consider x = 0.123, where
10x = 1.23. Then we shift one period to the left and
subtract to cancel the infinite string of decimals

102(10x) = 123.23

(102 − 1)10x = 123.23 − 1.23 = 122

x =
122

(102 − 1)10
=

122
990

.



Decimal expansion 3

▶ In general,

10sx = a.a1...ar

(10r − 1)10sx = (10r − 1)a + a1 . . . ar

x =
(10r − 1)a + a1 . . . ar

(10r − 1)10s

which is rational.
▶ =⇒ : If x = m

n the division will either terminate, or we will
get repeating remainders after at most n − 1 steps.



Decimal expansion 4

▶ Notice that

0.a1...ar =
a1...ar

10r =
a1...ar

10 · · · 0
, so 0.3 =

3
10

,

0.a1...ar =
a1...ar

10r − 1
=

a1...ar

9 · · · 9
, so 0.3 =

3
9
.

▶ We will call 1 followed by a string of r zeros a 10-block of
length r and a string of r nines a 9-block of length r .



Decimal expansion 5
▶ As an example, consider 1/7.

1 : 7 = 0.142857 . . .
−0

10 remainder 1
−7

30 remainder 3
−28

20 remainder 2
−14

60 remainder 6
−56

40 remainder 4
−35

50 remainder 5
−49

1 remainder 1



Decimal expansion 6

▶ There is a pattern in the decimal expansion of 1/7, which
can be explained as follows.

1
7
=

14
98

=
14

100 − 2
=

0.14
1 − 2/102 =

∞∑
k=0

0.14(2/102)k

= 0.14 + 0.0028 + 0.000056 + 0.00000112 + · · ·
= 0.142857.



Historical remarks 1
▶ We have seen that a rational number has a decimal

expansion that is either terminating or repeating, but how
can we tell which type 1/n has, and what the length of the
minimal repeating block is?

▶ Leibniz (1677) claimed that if n and 10 are relatively prime,
then the decimal expansion of 1/n is periodic and the
length of the repeating block is a factor in n − 1.

▶ However, in 1685 Wallis pointed out that this fails for
1/21 = 0.047619, since 6 does not divide 20. Lambert
claimed in 1758 that Leibniz’s claim was true if n is prime,
but he was not able to prove it.

▶ Lambert finally managed to prove it in 1769, using Fermat’s
Little Theorem, which shows that 10p−1 − 1 is divisible by p
if p is prime. This shows that 1/p can be extended to a
fraction with a denominator equal to 10p−1 − 1. This was
independently rediscovered by Bernoulli in 1771.



Historical remarks 2
▶ The result can be further strengthened by using Euler’s

Theorem, which shows that if n and 10 are relatively prime,
then 10ϕ(n) − 1 is divisible by n, where ϕ(n) is the number
of 1 ≤ k ≤ n that are relatively prime to n.

▶ It follows that if n is relatively prime to 10, then 1/n can be
extended to a fraction with a denominator equal to
10ϕ(n) − 1, and we can conclude that the length of the
repeating block is a factor of ϕ(n). For example, the length
of the repeating block of 1/21 = 0.047619 is 6, which
divides ϕ(21) = 12.

▶ This example shows that in order to solve a simple problem
about decimal expansion, it was necessary to introduce
techniques from number theory and modular arithmetic.

▶ We will therefore now take a break, and study some
number theory before we continue with the decimal
expansions.



Euler’s Theorem and decimal expansion 1

▶ We define Euler’s ϕ-function, ϕ(n), to be the number of
natural numbers 1 ≤ k ≤ n with k and n relatively prime.

▶ Euler’s Theorem says that if gcd(n,10) = 1, then
10ϕ(n) ≡ 1 (mod n), which is the same as saying that
n|(10ϕ(n) − 1), i.e., n divides a 9-block of length ϕ(n).

▶ From the decimal expansion of 1/7, we see that

(106 − 1)1/7 = 142857.142857 . . .− 0.142857 . . .

= 142857,

so that 999999 = 7 · 142857. This shows that 7 divides a
9-block, 106 − 1, of length equal to the period of 1/7 and
that (106 − 1)/7 is the repeating block. Since ϕ(7) = 6, this
agrees with Euler’s Theorem.



Euler’s Theorem and decimal expansion 2

▶ If gcd(n,10) = 1, then the order of 10 in Zn is the smallest
positive number k such that n divides 10k − 1. We know
that the order is a factor of ϕ(n).

▶ We also know that the order is equal to the length of the
minimal repeating block.

▶ If n divides 10l − 1, then there is a repeating block of length
l , but if k < l , then this block consist of several copies of
the minimal repeating block, so k |l .



Types of rational decimal expansion 1
▶ Consider

m
n

where 0 < m < n and gcd(m, n) = 1, so that 0 < m/n < 1.

Terminating 0.d1 . . . dt(dt ̸= 0)
m

2u5v , t = max(u, v)
Mt

10t =
d1 . . . dt

10t

Simple-
periodic

0.d1 . . . dr
m
n
, (n, 10) = 1

Ms

10r − 1
=

d1 . . . dr

10r − 1

Delayed-
periodic

0.d1 . . . dtdt+1 . . . dt+r
m

n1n2
, n1 = 2u5v ,

gcd(n2, 10) = 1,
t = max(u, v) > 1,
n2 > 1.

Md

10t(10r − 1)

▶ Since Md < 10t(10r − 1), we can divide by (10r − 1) to get a quotient
with at most t digits.

Md = (10r − 1)d1 . . . dt + dt+1 . . . dt+r and
Md

10t(10r − 1)
=

d1 . . . dt

10t +
dt+1 . . . dt+r

10t(10r − 1)
.



Types of rational decimal expansion 2

▶ Notice that

Md = (10r − 1)d1 . . . dt + dt+1 . . . dt+r ,

which we can also write as

10r d1 . . . dt + dt+1 . . . dt+r − d1 . . . dt

= d1 . . . dt+r − d1 . . . dt .

▶ This shows how to convert between Md and the di . We
have shown that x = 0.123 = 122/990, and we can write
Md = 122 as either 99 · 1 + 23 or as 123 − 1.



Types of rational decimal expansion 3
▶ Proof: m/n is terminating if and only if

m/n =
m

2u5v =
Mt

10t .

▶ m/n is simple-periodic if and only if we can cancel the
decimals by shifting one period, i.e.

(10r − 1)m/n = Ms.

▶ m/n is delayed-periodic if and only if we can cancel the
decimals by shifting one period and moving the period t
places, i.e

10t(10r − 1)m/n = Md .

▶

0.062 = 62/999, 0.062 = 62/(10 · 99) = 62/990.

▶ Notice that there may be initial 0’s in the di ’s, that the type
of expansion only depends on n and not on m, and that the
fractions in the last column need not be reduced.



Types of rational decimal expansion 4

▶ In the simple-periodic case, the repeating block is simply m(10r − 1)/n,
but in the delayed-periodic case, we must divide m10t(10r − 1)/n by
10r − 1 to separate the finite and repeating parts. However, it is easier
to divide m10t/n1 by n2 to keep the numbers smaller, as the following
examples show.

▶

1
6
=

1
2 · 3

=
5 · 3

10 · 9
=

15
10 · 9

=
1 · 9 + 6

10 · 9
=

1
10

+
6

10 · 9
= 0.16,

1
6
=

1
2 · 3

=
5

10 · 3
=

1 · 3 + 2
10 · 3

=
1

10
+

2
10 · 3

=
1

10
+

6
10 · 9

= 0.16.

▶

1
24

=
1

23 · 3
=

53 · 3
103 · 9

=
375

103 · 9
=

41 · 9 + 6
103 · 9

=
41
103 +

6
103 · 9

= 0.0416,

1
24

=
1

23 · 3
=

53

103 · 3
=

125
103 · 3

=
41 · 3 + 2

103 · 3
=

41
103 +

2
103 · 3

= 0.0416.



Types of rational decimal expansion 5

▶ Notice that 106 − 1 = 33 · 7 · 11 · 13 · 37 = 76923 · 13 = 142857 · 7.

1
26

=
1

2 · 13
=

5 · 76923
10 · (106 − 1)

=
384615

10 · (106 − 1)
= 0.0384615.

▶

1
28

=
1

22 · 7
=

25
102 · 7

=
3 · 7 + 4
102 · 7

=
3

102 +
4

102 · 7

=
3

102 +
4 · 142857

102 · (106 − 1)
=

3
102 +

571428
102 · (106 − 1)

= 0.03571428,

1
28

=
1

22 · 7
=

25 · 142857
102 · (106 − 1)

=
3 · (106 − 1) + 571428

102 · (106 − 1)

=
3

102 +
571428

102 · (106 − 1)
= 0.03571428.

▶ Notice how the type of the decimal expansion of m/n and the size of r
and t only depend on n.



Factoring 10n − 1
▶ To find denominators with short periods, we use the

following table. The period of 1/p is the r for which p first
appears as a factor in 10r − 1. Notice how 3,11 and 13
appear earlier than given by Euler’s Theorem, while 7 first
appears in 106 − 1.

101 − 1 = 32

102 − 1 = 32 · 11
103 − 1 = 33 · 37
104 − 1 = 32 · 11 · 101
105 − 1 = 32 · 41 · 271
106 − 1 = 33 · 7 · 11 · 13 · 37
107 − 1 = 32 · 239 · 4649
108 − 1 = 32 · 11 · 73 · 101 · 137
109 − 1 = 34 · 37 · 333667
1010 − 1 = 32 · 11 · 41 · 271 · 9091
1011 − 1 = 32 · 21649 · 513239
1012 − 1 = 33 · 7 · 11 · 13 · 37 · 101 · 9901



1/p for p prime

▶ If p is prime other than 2 or 5, then it follows from Fermat’s
Theorem that p divides a 9-block of length p − 1, and
therefore the order, r , divides p − 1.

▶ However, for composite numbers, n, it is not necessarily
true that n divides a 9-block of length n − 1. Since

1020 − 1 = 32 · 11 · 41 · 101 · 271 · 3541 · 9091 · 27961,

we see that it fails for 21. It also shows that the order, r ,
does not necessarily divide n − 1. In fact,
ϕ(21) = ϕ(7)ϕ(3) = 6 · 2 = 12, and the order, 6, divides
ϕ(n) and not n.



Summary of 1/n
▶ t is the length of the terminating part and r is the length of the repeating block in the decimal expansion of

1/n.

1/n t r ϕ(n) 1/n t r ϕ(n)
1/2 = 0.5 1 1/22 = 0.045 1 2 10
1/3 = 0.3 1 2 1/23 = 0.0434782608695652173913 22 22
1/4 = 0.25 2 1/24 = 0.0416 3 1 8
1/5 = 0.2 1 1/25 = 0.04 2
1/6 = 0.16 1 1 2 1/26 = 0.0384615 1 6 12
1/7 = 0.142857 6 6 1/27 = 0.037 3 18
1/8 = 0.125 3 1/28 = 0.03571428 2 6 12
1/9 = 0.1 1 6 1/29 = 0.0344827586206896551724137931 28 28
1/10 = 0.1 1 1/30 = 0.03 1 1 8
1/11 = 0.09 2 10 1/31 = 0.032258064516129 15 30
1/12 = 0.083 2 1 4 1/32 = 0.03125 5
1/13 = 0.076923 6 12 1/33 = 0.03 2 20
1/14 = 0.0714285 1 6 6 1/34 = 0.02941176470588235 1 16 16
1/15 = 0.06 1 1 8 1/35 = 0.0285714 1 6 24
1/16 = 0.0625 4 1/36 = 0.027 2 1 12
1/17 = 0.0588235294117647 16 16 1/37 = 0.027 3 36
1/18 = 0.05 1 1 6 1/38 = 0.0263157894736842105 1 18 18
1/19 = 0.052631578947368421 18 18 1/39 = 0.025641 6 24
1/20 = 0.05 2 1/40 = 0.025 3
1/21 = 0.047619 6 12 1/41 = 0.02439 5 40

▶ What can you say about 1/27 and 1/37? Why?

▶ 103 − 1 = 33 · 37.



Primes with given period
▶ Primes p with repeating decimal expansions of period r in 1/p.

Period Primes
1 3
2 11
3 37
4 101
5 41, 271
6 7, 13
7 239, 4649
8 73, 137
9 333667
10 9091
11 21649, 513239
12 9901
13 53, 79, 265371653
14 909091
15 31, 2906161
16 17, 5882353
17 2071723, 5363222357
18 19, 52579
19 1111111111111111111
20 3541, 27961

▶ Notice how 7, 17 and 19 have maximal periods, p − 1. Gauss
conjectured in 1801 that there are infinitely many primes with maximal
periods, but this has not been proved.



Periods of inverse primes

▶ Here are the periods of 1/p for all primes less than 101
except for 2 and 5.

p r p r p r
3 1 31 15 67 33
7 6 37 3 71 35
11 2 41 5 73 8
13 6 43 21 79 13
17 16 47 46 83 41
19 18 53 13 89 44
23 22 59 58 97 96
29 28 61 60 101 4



Periods of 1/n (optional)

▶ If n = pk , the period is a divisor of ϕ(pk ) = (p − 1)pk−1, but
there is no simple formula.

▶ If n = n1n2 where gcd(n1,n2) = 1, then it can be shown
that the period of 1/n is the least common multiple of the
periods of 1/n1 and 1/n2.



Midy’s Theorem (optional)
▶ If a/p is a reduced fraction with p prime and the period of

a/p is 2n, i.e.,

a
p
= 0.a1 . . . anan+1 . . . a2n

then it can be shown the digits in the second half of the
repeating decimal period are the 9s complement of the
corresponding digits in its first half. In other words,
ai + ai+n = 9. For example,

1
13

= 0.076923 with 076 + 923 = 999,and

1
17

= 0.0588235294117647 with

05882352 + 94117647 = 99999999.



Cyclic numbers (optional)

▶ Consider the following decimal expansions

1/7 = 0.142857

2/7 = 0.285714

3/7 = 0.428571

4/7 = 0.571428

5/7 = 0.714285

6/7 = 0.857142

▶ Notice how the digits of the repeating blocks are cyclic
permutations of each other.



Multiple cycles (optional)
▶ Sometimes the numbers m/n break into several cycles. For

example, the multiples of 1/13 can be divided into two sets:

1/13 = 0.076923
10/13 = 0.769230
9/13 = 0.692307
12/13 = 0.923076
3/13 = 0.230769
4/13 = 0.307692

where each repeating block is a cyclic re-arrangement of 076923
and

2/13 = 0.153846
7/13 = 0.538461
5/13 = 0.384615
11/13 = 0.846153
6/13 = 0.461538
8/13 = 0.615384

where each repeating block is a cyclic re-arrangement of
153846.


