
Law of Large Numbers - pg. 294 Moore’s Text

When tossing a fair coin the chances of tails and heads are the same:

50% and 50%. So, if the coin is tossed a large number of times, the

number of heads and the number of tails should be approximately,

equal.

This is the law of large numbers.

The number of heads will be off half the number of tosses by some

amount. That amount is called chance error. So we have

no. of heads = half the no. of tosses + chance error
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John Kerrich’s coin-tossing Experiment

While imprisoned by the Germans during WWII, John Kerrich tossed

a coin 10,000 times with heads coming up 5067 or 50.67 percent of the

time. In 1946 he published his finding in a monograph, “An

Experimental Introduction to the Theory of Probability”. Here is what

Nature said when the monograph came out: “When Denmark was

overrun by the Germans various British subjects were caught, Mr

Kerrich among them. He was interned in a camp under Danish control

and spent part of his enforced leisure in coin-tossing experiments”

His data are shown in the table below:
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John Kerrich’s coin-tossing Experiment

The chance error increases with the number of tosses in absolute

terms, but it decreases in relative terms.

Q: A coin is tossed and you win $1 if there are more than 60% heads.

Which is better: 10 tosses or 100?
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John Kerrich’s coin-tossing Experiment

The chance error increases with the number of tosses in absolute

terms, but it decreases in relative terms.

Q: A coin is tossed and you win $1 if there are more than 60% heads.

Which is better: 10 tosses or 100?

A: 10 tosses is better. As the number of tosses increase you are more

likely to be closer to 50%, according to the law of averages.

Q: A coin is tossed and you win $1 if there are more than 48% heads.

Which is better: 10 tosses or 100?
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John Kerrich’s coin-tossing Experiment

The chance error increases with the number of tosses in absolute

terms, but it decreases in relative terms.

Q: A coin is tossed and you win $1 if there are more than 48% heads.

Which is better: 10 tosses or 100?

A: 100 tosses is better, because the law of averages is working for you

– with more tosses, you are more likely to be close to 50%.
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Random Variables

Random variables have an element of uncertainty or variability within

them. Two quantities that describe the behavior of a random variable

are the Expected Value and the Standard Error.
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Roulette Example

A roulette wheel has 38 pockets. 1 through 36 are alternatively colored

red and black, plus 0 and 00 which are colored green. So, there are 18

red pockets, 18 black and 2 green ones.

Let’s take a look at a roulette table layout.
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Roulette Example

A roulette wheel has 38 pockets. 1 through 36 are alternatively colored

red and black, plus 0 and 00 which are colored green. So, there are 18

red pockets, 18 black and 2 green ones.

Suppose you bet on any number. If it comes up, you win $35,

otherwise you loose $1.

Your chance of winning is 1 in 38 and your chance of loosing is 37 in

38. Find the expected Gain or Loss in one spin of roulette.

E[Gain] = 1

38
× (+$35) + 37

38
× (−$1) ∼ −$0.053
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Expected Value

Count the number of wins in 1000 plays of a roulette. The law of large

numbers tells you that the expected value of the number of wins is

E[Wins] = 1
38

× 1000 = 26. You actually play the games and the

results are

• 31 wins, you are off by +5

• 18 wins, you are off by -8

• 24 wins, you are off by -2

The “amounts off” are similar in size to the standard error, which we

will define in a couple of slides. The expected value and the standard

error depend on the random process that generates the numbers.
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Expected Gain/Loss Playing Roulette

Q: Suppose you play 1,000 games of roulette betting +$1 on #7 at

each play. If you win, you get your dollar plus 35 more dollars, if you

lose, the casino keeps your dollar. What are the chances that you will

come out ahead from these 1,000 plays?

We will build a Probability Model and identify

the Population, Sample and Imaginary Data

sets to address this question. Then we’ll come back

to the slides to address the long run mean of

Sums.
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Expected Gain/Loss Playing Roulette

• What’s the chance we come out ahead if we play 1000

games of roulette?

Well, after 1 play you expect to be behind by

E[Gain] = 1

38
× (+$35) + 37

38
× (−$1) ∼ −$0.053

So, after 1000 plays, we expect to be behind by:
︸ ︷︷ ︸

?

And, give or take how much? Maybe the give or take is big enough

that you still have a pretty good chance of coming out ahead.
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The Standard Error for Sums

Sum of money after 1000 plays = Observed Value

= Expected Value + chance error

The standard error gives a measure of how large the chance error

is likely to be.

We can calculate the standard error for the sum of the 1000 plays as

√
sample size × (SD of pop)

where “SD of pop” stands for the standard deviation of the population.
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Back to our original Question

Now we’ll use our Probability Model to address the question

What’s the chance you come out ahead if you play 1000

games of roulette?

Symbolically, that’s P (S > $0), which is equivalent to wondering

what percentage of the sums in the imaginary dataset are positive. If

we knew what the histogram of the sums looked like, we could answer

this question by working out the area under the histogram to the right

of $0.

The Central Limit Theorem will tell us about the shape of the

histogram of the sums.
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Central Limit Theorem (pg. 302)

Let’s discuss the central limit theorem for the population:

population







1

2

9







mean= 1+2+9
3

= 4
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Central Limit Theorem

Consider taking an IID random sample of 25 draws from the

population and sum the draws. The sum ought to be around

25 × mean = 25 × 4 = 100.

Now, imagine repeating this sampling story a lot – that is, take 25 IID

draws from the population, work out their sum; take 25 more, work

out their sum, and so on, many times. Make a histogram of all the

sums you would get. Theory says it would look like the wavy

histogram below:
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Central Limit Theorem
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So, when you take 100 IID draws from the population, we see that the

long run histogram of sums follows the normal curve. This is the

Central Limit Theorem in action: as the number (n) of draws going

into a sum goes up, the long-run histogram for the sum looks more and

more like the normal curve.

The number of draws needed to get a good normal approximation

depends on how close the shape of the population histogram is to

normal. For example:
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Central Limit Theorem

Let’s consider taking an IID random sample of 100 draws from the

population:

Population










0
...

0

1











N = 10

mean= µ = 9·0+1
10

= 0.1
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Central Limit Theorem

Consider taking an IID random sample of 25 draws from the

population and sum the draws. The sum ought to be around

25 × mean = (25) · (0.1) = 2.5

Now, do the same thought experiment of repeating this sampling story

a lot – that is, take 100 IID draws from the population, work out their

sum; take 25 more, work out their sum, and so on, many times. Make

a long run histogram of all the sums you would get. We’d see that the

long run histograms approximate the normal curve with fewer draws

from the sample than before.
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Central Limit Theorem
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→Back to our original Question...

...Roulette, in case you’ve forgotten←

Now we’ll use our Probability Model to address the question

What’s the chance you come out ahead if you play 1000

games of roulette?

Symbolically, that’s P (S > $0), which is equivalent to wondering

what percentage of the sums in the imaginary dataset are positive.

Now that we know that the long run histogram of the sums looks like

the normal curve, we could answer this question by working out the

area under the histogram to the right of $0.

→Let’s work that out←
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Review of Concepts

Let’s review what we’ve learned so far. When given information about

a population of data, building a population model, enables us to:

• Calculate long run means to find expected values

• Calculate long run sd’s, (standard error), to find give-or-take of

long run mean estimates

• Answer questions about the chances of getting a value other than

the long run mean... like, the chances of coming out ahead in 1000

spins of a roulette wheel.

NOTE: The Expected Value and SE describe the sampling

distribution.
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Q: What is the difference between the SD and the SE?

Answer:

• The SD says that the amount of loss on a single

roulette wheel spin when betting on #7 is about

5 cents.

• The SE says that the average loss of 1000 plays

of roulette is accurate up to $182.

SD is related to the precision of single measurements.

SE is related to the precision of the average.

In the previous example, any specific loss is only accurate to about 5

cents. The estimated loss after playing 1000 games of roulette, based

on the Imaginary Dataset is accurate to about $182.
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Expected Gain/Loss Playing Roulette - Sums

Which has better odds? Compare the chances of coming out ahead

after 1,000 plays of roulette by:

• placing 1000 $1 bets on #7

• placing 1000 $1 bets on a split

If you put $1 on a split, say 11/12, and either 11 or 12 comes up, you

get back your dollar plus $17 in winnings.

Build a probability model describing the popula-

tion, sample and imaginary data sets to address this

question.

MATH 134

180

Measurement Error

If the Potassium levels in your blood are measured you might find

measurements such as:

Y =











3.8

3.8

3.8
...











Not Random -

Deterministic

At finer level→
Y =











3.82

3.79

3.82
...











Stochastic - Random -

Probabilistic

What explains the difference in the random measures?
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Basic Measurement Error Model

obs1 = true value + bias + random error1

obs2 = true value + bias + random error2
...

obsn = true value + bias + random errorn

Bias is a systematic tendency to over or underestimate the true value.

Bias can’t be detected from the data – we need an external standard.
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Measurement Error - SE[x]

Alright, let’s practice our skills at building a probability model for

another example.

Any measurement is subject to chance error. To reduce the size of the

chance error, the best thing to do is to repeat the measurements

several times. This is the Law of Large Numbers at work. As the

number of observation drawn increases, the mean of the observed

values, x, gets closer to the mean of the population, µ.

Case Study: Hypokalemia

Set up a Probability Model, describing the population,

sample and imaginary data sets.
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Measurement Error - Example Problem 2

100 measurements of the NB 10, a weight owned by the National

Bureau of Standards, are taken to determine the true weight. The

nominal weight of the NB 10 is 10 grams. The units, in micrograms

below 10 grams, are recorded.

Given that the sample mean is 404.6 µgms with a SD of 6 µgms, find

the best estimate for the true weight of the NB 10. Find the

give-or-take for the estimate.

Set up a Statistical Model, describing the population, sample

and imaginary data sets.
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Q: What is the difference between the SD and the SE?

Answer:

• The SD says that the a single measurement is

accurate up to 6 µgms or so.

• The SE says that the mean of all 100 measure-

ments is accurate up to 0.6 µgms or so.

SD is related to the precision of single measurements.

SE is related to the precision of the mean.

In the previous example, any specific measurement is only accurate by

about 6 µgms. The estimated weight of the NB 10, based on the mean

of 100 measurements, is accurate by about 0.6 µgms.

MATH 134

185



Sampling with or without replacement

Suppose we are polling New Mexico and Texas to estimate

the voting intentions in a presidential election. NM has

about 1.2 million voters and TX has about 12.5. Will we

need to poll more people in TX to achieve the same accu-

racy on both state polls?

When taking a sample from a finite population it is important to bear

in mind two important issues:

• The accuracy is not determined by the size of the sample

relative to the population.

• Sampling with or without replacement produces almost

the same results when the population size is large.

The first statement is somewhat counterintuitive. Intuitively, we think

that to achieve the same accuracy we need a larger sample in Texas

than New Mexico, however, this is not true!
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Sampling with or without replacement

What counts is the absolute size of the sample. The formula for the SE

of a percentage or mean does not contain any information of the

population size.

Remember,

SE(mean) = σ√
n

Consider the chemical composition of a liquid. If the liquid is well

mixed, then a drop should accurately tell us about the composition

regardless of whether it is taken from a small test tube or from a large

jug (e.g. whether the population size is relatively large or otherwise).
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Probability vs. Statistical Inference

SAMPLING SCHEMES:

Independent and Identically Distributed (IID) - sampling with

replacement – Math is simpler

Simple Random Sampling (SRS) - sampling without replacement –

usually used in practice

MATH 134

188

Case Study: The Chesapeake and Ohio Freight Study

We’ll build a statistical model describing the

population, sample and imaginary data sets

to address this business auditing application.
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