School Mathematics from an Advanced Viewpoint Pretest

Helmer Aslaksen
Dept. of Teacher Education/Dept. of Mathematics
University of Oslo
helmer.aslaksen@gmail.com

January 16, 2024

Discuss these questions in your group. Afterwards I will ask you if you think the questions were easy or hard.

1 Warmup

1. How can you explain to a 12 -year old that $10: 1 / 2=20$?
2. Is $0 . \overline{9}=1$?
3. What can you say about the sum and product of the roots of a quadratic equation $a x^{2}+b x+c=0$?
4. Why is it not always a good idea to say that the slope of a linear function is how much y increases when x increases by 1 ?
5. What is a rational function?
6. What do we call a quadrilateral with four equal sides?
7. Why does GeoGebra by default give equations for a line in the plane in the form $a x+b y=c$ instead of $y=a x+b$?
8. How can you explain to a 12-year old that the area of a circle of radius r is πr^{2} ?
9. Why and when do we use radians?
10. Is the function $f(x)=1 / x$ continuous?
11. Give an example of a function where $f^{\prime}(0)=0$, but where 0 is not an extremum.
12. Give an example of a function where $f^{\prime \prime}(0)=0$, but where 0 is not a point of inflection.
13. The Fundamental Theorem of Calculus says that for a differentiable function $f(x)$, we can write $f(x)=\int_{a}^{x} f^{\prime}(t) d t$. Why is this fundamental?
14. Why should you write $f(x)=\int_{a}^{x} f^{\prime}(t) d t$ instead of $f(x)=\int_{a}^{x} f^{\prime}(x) d x$?

2 Harder questions

1. Give an example of a function that has a tangent at a point, but which is not differentiable there.
2. Why is the derivative of the area of a circle of radius $r, A(r)=\pi r^{2}$, equal to the circumference, $C(r)=2 \pi r$?
3. Can you say something that can make students remember the formulas for the volume of the sphere of radius $r, V(r)=(4 / 3) \pi r^{3}$, and the surface area of a sphere, $4 \pi r^{2}$?
4. Give an example of two triangles, $\triangle A B C$ and $\Delta A^{\prime} B^{\prime} C^{\prime}$, where $A B=$ $A^{\prime} B^{\prime}, B C=B^{\prime}$ and $\angle A=\angle A^{\prime}$, but where the triangles are not congruent.

3 Much harder questions!

1. Which fractions a / b with $a, b \in \mathbb{Z}$ have finite decimal expansion?
2. Why is a geometric series called geometric?
3. If $f(x)$ is differentiable everywhere, $f(x)>0$ for $x \neq 0$ and $f(0)=0$, does it follow that $f^{\prime}(x)$ changes sign at 0 ?
