

UiO : University of Oslo

Mean and Extreme

Helmer Aslaksen

Dept. of Teacher Education & Dept. of Mathematics University of Oslo

helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/

Some topics you can take straight to the classroom.

- Some topics you can take straight to the classroom.
- Some topics will help you answer questions that you may be asked once in a while by strong pupils.

- Some topics you can take straight to the classroom.
- Some topics will help you answer questions that you may be asked once in a while by strong pupils.
- Some topics you will probably never discuss with any pupils, but knowing it will help your own understanding of the topics.

- Some topics you can take straight to the classroom.
- Some topics will help you answer questions that you may be asked once in a while by strong pupils.
- Some topics you will probably never discuss with any pupils, but knowing it will help your own understanding of the topics.
- There should be a line of sight back towards school mathematics.

UiO : University of Oslo Arithmetic series

Why is an arithmetic series called arithmetic?

- Why is an arithmetic series called arithmetic?
- We define the arithmetic mean to be

$$\mathsf{AM}(x,y) = \frac{1}{2}(x+y).$$

- Why is an arithmetic series called arithmetic?
- We define the arithmetic mean to be

$$\mathsf{AM}(x,y) = \frac{1}{2}(x+y).$$

In an arithmetic series, every term is the arithmetic mean of the two surrounding terms.

$$\frac{1}{2}(a_{n+1}+a_{n-1})=\frac{1}{2}(a_n+d+a_n-d)=\frac{1}{2}2a_n=a_n.$$

Why is a geometric series called geometric?

- Why is a geometric series called geometric?
- We define the geometric mean to be

$$\mathsf{GM}(x,y)=(xy)^{1/2}.$$

- Why is a geometric series called geometric?
- We define the geometric mean to be

$$\mathsf{GM}(x,y)=(xy)^{1/2}.$$

In a geometric series (with positive terms), every term is the geometric mean of the two surrounding terms.

- Why is a geometric series called geometric?
- We define the geometric mean to be

$$\mathsf{GM}(x,y)=(xy)^{1/2}.$$

In a geometric series (with positive terms), every term is the geometric mean of the two surrounding terms.

$$(a_{n+1}a_{n-1})^{1/2} = [(a_n r)(a_n/r)]^{1/2} = (a_n^2)^{1/2} = a_n.$$

UiO: University of Oslo Harmonic series

▶ Why is the harmonic series,

$$\sum_{n=1}^{\infty} \frac{1}{n},$$

called harmonic?

UiO: University of Oslo Harmonic series

▶ Why is the harmonic series,

$$\sum_{n=1}^{\infty} \frac{1}{n},$$

called harmonic?

We define the harmonic mean to be

$$\mathsf{HM}(x,y) = \frac{2}{\frac{1}{x} + \frac{1}{y}}.$$

UiO : University of Oslo Harmonic series

Why is the harmonic series,

$$\sum_{n=1}^{\infty} \frac{1}{n},$$

called harmonic?

We define the harmonic mean to be

$$\mathsf{HM}(x,y) = \frac{2}{\frac{1}{x} + \frac{1}{y}}$$

In the harmonic series, every term is the harmonic mean of the two surrounding terms.

UiO : University of Oslo Harmonic series

Why is the harmonic series,

$$\sum_{n=1}^{\infty} \frac{1}{n},$$

called harmonic?

We define the harmonic mean to be

$$\mathsf{HM}(x,y) = \frac{2}{\frac{1}{x} + \frac{1}{y}}$$

In the harmonic series, every term is the harmonic mean of the two surrounding terms.

$$\frac{2}{\frac{1}{1/(n+1)} + \frac{1}{1/(n-1)}} = \frac{2}{n+1+n-1} = \frac{2}{2n} = \frac{1}{n}$$

In 1973 UC Berkeley admitted 44% of males and 35% of females who applied to grad school. The tables show admission data from the six largest departments.

Department	Male acceptance rate	Female acceptance rate	
A	62%	82%	
В	63%	68%	
С	37%	34%	
D	33%	35%	
E	28%	24%	
F	6%	7%	

Department	Male		Female	
	Applicants	%	Applicants	%
A	825	62%	108	82%
В	560	63%	25	68%
С	325	37%	593	34%
D	417	33%	375	35%
E	191	28%	393	24%
F	373	6%	341	7%

${\tt UiO\, \mbox{:}\, University of Oslo}$ Confusing means — Simpson's paradox 2

You teach a class with 20 strong students and 5 weak students. At the final exam, the strong students get an average of 80 points and the weak students get an average of 50.

- You teach a class with 20 strong students and 5 weak students. At the final exam, the strong students get an average of 80 points and the weak students get an average of 50.
- Your Principal is impressed that all the weak students passed, and next year you get a class with 15 strong students and 10 weak students. This year the strong students increase their average to 85, and the weak students increase their average to 55.

- You teach a class with 20 strong students and 5 weak students. At the final exam, the strong students get an average of 80 points and the weak students get an average of 50.
- Your Principal is impressed that all the weak students passed, and next year you get a class with 15 strong students and 10 weak students. This year the strong students increase their average to 85, and the weak students increase their average to 55.
- You are quite proud of yourself, but the Principal calls you in and is unhappy because the overall average has dropped from (20 · 80 + 5 · 50)/25 = 74 to (15 · 85 + 10 · 55)/25 = 73.

- You teach a class with 20 strong students and 5 weak students. At the final exam, the strong students get an average of 80 points and the weak students get an average of 50.
- Your Principal is impressed that all the weak students passed, and next year you get a class with 15 strong students and 10 weak students. This year the strong students increase their average to 85, and the weak students increase their average to 55.
- You are quite proud of yourself, but the Principal calls you in and is unhappy because the overall average has dropped from (20 · 80 + 5 · 50)/25 = 74 to (15 · 85 + 10 · 55)/25 = 73.
- The arithmetic mean may look innocent, but can be devious.

UiO : University of Oslo What is the meaning of the geometric mean?

What is the meaning of the geometric mean?

Given a rectangle with sides x and y, we want to find a square with the same area. What is the side of the square?

What is the meaning of the geometric mean?

Given a rectangle with sides x and y, we want to find a square with the same area. What is the side of the square?

$$\blacktriangleright \ z = \sqrt{xy} = \mathsf{GM}(x, y).$$

UiO : University of Oslo What is the meaning of the harmonic mean?

What is the meaning of the harmonic mean?

You drive to work during rush hour with an average speed of 30km/h. Going home you manage an average speed of 60km/h. What was your average speed for the whole trip?

What is the meaning of the harmonic mean?

- You drive to work during rush hour with an average speed of 30km/h. Going home you manage an average speed of 60km/h. What was your average speed for the whole trip?
- Assume that the distance is d. Then your average speed was

$$\frac{2d}{d/30+d/60} = \frac{2}{1/30+1/60} = \frac{2 \cdot 60}{2+1} = 40 = H(30, 60).$$

What is the meaning of the harmonic mean?

- You drive to work during rush hour with an average speed of 30km/h. Going home you manage an average speed of 60km/h. What was your average speed for the whole trip?
- Assume that the distance is d. Then your average speed was

$$\frac{2d}{d/30+d/60} = \frac{2}{1/30+1/60} = \frac{2 \cdot 60}{2+1} = 40 = H(30, 60).$$

The term harmonic is related to music theory.

UIO : University of Oslo The harmonic series diverges

UiO **:** University of Oslo The harmonic series diverges

This was shown by Nicole Oresme around 1350.

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \cdots$$

> 1 + $\frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{16} + \cdots$

UiO: University of Oslo The harmonic series diverges

This was shown by Nicole Oresme around 1350.

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \cdots$$

> 1 + $\frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{16} + \cdots$

This argument shows that

$$\sum_{n=1}^{2^k} \frac{1}{n} > 1 + \frac{k}{2},$$

and we see that the series diverges.

$\frac{\text{UiO}\text{:}\text{University of Oslo}}{The AGH inequality}$

 $AM(a, b) \ge GM(a, b) \ge HM(a, b).$

UIO: University of Oslo Proof of the AGH inequality

$$\left(\frac{a+b}{2}\right)^{2} = G^{2} + \left(a - \frac{a+b}{2}\right)^{2}$$
$$\frac{(a+b)^{2}}{4} = G^{2} + \frac{(a-b)^{2}}{4}$$
$$(a+b)^{2} = 4G^{2} + (a-b)^{2}$$
$$2ab = 4G^{2} - 2ab$$
$$G^{2} = ab$$
$$G = \sqrt{ab} = GM(a,b).$$

UIO: University of Oslo Proof of the AGH inequality 2

UIO: University of Oslo Proof of the AGH inequality 2

UIO: University of Oslo Proof of the AGH inequality 2

▶ By similar triangles A/G = G/H or $G^2 = AH$. Hence

$$H = \frac{G^2}{A} = \frac{ab}{\frac{a+b}{2}} = \frac{2}{\frac{a+b}{ab}} = \frac{2}{\frac{1}{a}+\frac{1}{b}} = \mathsf{HM}(a,b).$$

Consider a rectangle of width 1 and length L. We cut off squares of side x in each corner and fold to get a box of volume

$$V(L, x) = x(L-2x)(1-2x).$$

Consider a rectangle of width 1 and length L. We cut off squares of side x in each corner and fold to get a box of volume

$$V(L, x) = x(L-2x)(1-2x).$$

• If we solve V'(x) = 0 we get

$$x = \frac{L + 1 - \sqrt{(L + 1)^2 - 3L}}{6}$$

Consider a rectangle of width 1 and length L. We cut off squares of side x in each corner and fold to get a box of volume

$$V(L, x) = x(L-2x)(1-2x).$$

• If we solve V'(x) = 0 we get

$$x = \frac{L + 1 - \sqrt{(L + 1)^2 - 3L}}{6}.$$

• If we set
$$L = 1$$
, we get
 $x = \frac{1+1-\sqrt{(1+1)^2-3\cdot 1}}{6} = \frac{2-\sqrt{2^2-3}}{6} = \frac{1}{6}.$

In that case the area of the base is (2/3)² = 4/9, while the area of the side wall equals 4 · 1/6 · 2/3 = 4/9.

- In that case the area of the base is (2/3)² = 4/9, while the area of the side wall equals 4 ⋅ 1/6 ⋅ 2/3 = 4/9.
- Is it a coincidence that these two areas are equal?

- In that case the area of the base is (2/3)² = 4/9, while the area of the side wall equals 4 ⋅ 1/6 ⋅ 2/3 = 4/9.
- Is it a coincidence that these two areas are equal?
- Consider a convex, closed curve W, and let W(t) be the curve obtained by pushing W inward along the normal line a distance t. We can then "fold" up to get a box.

- In that case the area of the base is (2/3)² = 4/9, while the area of the side wall equals 4 ⋅ 1/6 ⋅ 2/3 = 4/9.
- Is it a coincidence that these two areas are equal?
- Consider a convex, closed curve W, and let W(t) be the curve obtained by pushing W inward along the normal line a distance t. We can then "fold" up to get a box.
- Let A(t) be the area of the region inside W(t), let P(t) be the perimeter of W(t) and let V(t) be the volume of the box.

- In that case the area of the base is (2/3)² = 4/9, while the area of the side wall equals 4 ⋅ 1/6 ⋅ 2/3 = 4/9.
- Is it a coincidence that these two areas are equal?
- Consider a convex, closed curve W, and let W(t) be the curve obtained by pushing W inward along the normal line a distance t. We can then "fold" up to get a box.
- Let A(t) be the area of the region inside W(t), let P(t) be the perimeter of W(t) and let V(t) be the volume of the box.
- ► I claim that A'(t) = -P(t).

We have A'(t) = lim_{h→0} A(t+h)-A(t)/h, and we can interpret A(t+h) - A(t) as the negative of the area of a "ring" of thickness h. Since the area of the ring will have area approximately equal to P(t)t, we get that

$$A'(t) = \lim_{h \to 0} \frac{A(t+h) - A(t)}{h} \approx \lim_{h \to 0} \frac{-P(t)h}{h} = -P(t).$$

We have A'(t) = lim_{h→0} A(t+h)-A(t)/h, and we can interpret A(t+h) - A(t) as the negative of the area of a "ring" of thickness h. Since the area of the ring will have area approximately equal to P(t)t, we get that

$$\mathcal{A}'(t) = \lim_{h \to 0} \frac{\mathcal{A}(t+h) - \mathcal{A}(t)}{h} \approx \lim_{h \to 0} \frac{-\mathcal{P}(t)h}{h} = -\mathcal{P}(t).$$

We have V(t) = A(t)t, so
V'(t) = A'(t)t + A(t) = -P(t)t + A(t) = 0 precisely when the area of the base equals the area of the wall.

 $\underbrace{ \text{UiO: University of Oslo} } \\ Source of counterexamples$

UIO: University of Oslo Source of counterexamples

$f_n(x) = \begin{cases} x^n \sin(1/x) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$

$\underbrace{ \text{UiO: University of Oslo} } \\ Source of counterexamples$

$$f_n(x) = \begin{cases} x^n \sin(1/x) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

$$\lim_{x\to\infty}x\sin(1/x)=\lim_{x\to\infty}\frac{\sin(1/x)}{1/x}=\lim_{y\to0}\frac{\sin(y)}{y}=1.$$

UiO **:** University of Oslo sin(1/x)

UiO **:** University of Oslo $\sin(1/x)$

*f*₀ is not continuous at *x* = 0, since lim_{x→0} *f*₀(*x*) does not exist.

UiO: University of Oslo $X \sin(1/x)$

UiO: University of Oslo $x \sin(1/x)$

• Remember that $\lim_{x\to\infty} f_1(x) = 1$.

• f_1 is continuous, since it is squeezed by $\pm x$, but

$$\lim_{x \to 0} \frac{f_1(x) - f_1(0)}{x - 0} = \lim_{x \to 0} \frac{x \sin(1/x) - 0}{x - 0} = \lim_{x \to 0} \sin(1/x),$$

does not exist, so f_1 is not differentiable at x = 0.

UiQ : University of Oslo $x^2 \sin(1/x)$ $f_2(x) = \begin{cases} x^2 \sin(1/x) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$ $x^2 \sin(1/x)$ Setting y = 1/x and using L'Hôpital's rule, we get $\lim_{x \to \infty} (x^2 \sin(1/x) - x) = \lim_{y \to 0} (\sin y/y^2 - 1/y) =$ $\lim_{v \to 0} \frac{\sin y - y}{v^2} = \lim_{v \to 0} \frac{\cos y - 1}{2v} = \lim_{v \to 0} \frac{-\sin y}{2} = 0.$

UiO: University of Oslo $x^2 \sin(1/x)$ $f_2(x) = \begin{cases} x^2 \sin(1/x) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$ $x^2 \sin(1/x)$ Setting y = 1/x and using L'Hôpital's rule, we get $\lim_{x \to \infty} (x^2 \sin(1/x) - x) = \lim_{y \to 0} (\sin y/y^2 - 1/y) =$ $\lim_{y \to 0} \frac{\sin y - y}{y^2} = \lim_{v \to 0} \frac{\cos y - 1}{2v} = \lim_{v \to 0} \frac{-\sin y}{2} = 0.$ f_2 is differentiable, since it is squeezed by $\pm x^2$.

UiO: University of Oslo
$$x^2 \sin(1/x)$$
 part 2

$f'_{2}(0) = \lim_{x \to 0} \frac{x^{2} \sin(1/x) - 0}{x - 0} = \lim_{x \to 0} x \sin(1/x) = 0.$ However, for $x \neq 0$ we have $f'_{2}(x) = 2x \sin(1/x) - \cos(1/x)$, and $\lim_{x \to 0} f'_{2}(x) = \lim_{x \to 0} (2x \sin(1/x) - \cos(1/x))$

does not exist.

UiQ: University of Oslo $x^2 \sin(1/x)$ part 2

$f'_{2}(0) = \lim_{x \to 0} \frac{x^{2} \sin(1/x) - 0}{x - 0} = \lim_{x \to 0} x \sin(1/x) = 0.$ However, for $x \neq 0$ we have $f'_{2}(x) = 2x \sin(1/x) - \cos(1/x)$, and

$$\lim_{x \to 0} f_2'(x) = \lim_{x \to 0} (2x \sin(1/x) - \cos(1/x))$$

does not exist.

▶ So *f*₂ is differentiable, but not continuously differentiable!

UiO: University of Oslo $x^2 \sin(1/x)$ part 2

$f_2'(0) = \lim_{x \to 0} \frac{x^2 \sin(1/x) - 0}{x - 0} = \lim_{x \to 0} x \sin(1/x) = 0.$

However, for $x \neq 0$ we have $f_2'(x) = 2x \sin(1/x) - \cos(1/x)$, and

$$\lim_{x \to 0} f_2'(x) = \lim_{x \to 0} (2x \sin(1/x) - \cos(1/x))$$

does not exist.

- So f₂ is differentiable, but not continuously differentiable!
- This is the mother of all counterexamples!

• Mean Value Theorem: Assume that f is differentiable on (a, b) and continuous on [a, b]. Then there is $c \in (a, b)$ such that

• *f* is increasing if $x < y \implies f(x) \le f(y)$.

- *f* is increasing if $x < y \implies f(x) \le f(y)$.
- *f* is strictly increasing if $x < y \implies f(x) < f(y)$.

- *f* is increasing if $x < y \implies f(x) \le f(y)$.
- *f* is strictly increasing if $x < y \implies f(x) < f(y)$.
- Assume that f' > 0 on (a, b). Given a < x < y < b, we can find $c \in (x, y)$ such that f(y) f(x) = f'(c)(y x) > 0. It follows that

- *f* is increasing if $x < y \implies f(x) \le f(y)$.
- *f* is strictly increasing if $x < y \implies f(x) < f(y)$.
- Assume that f' > 0 on (a, b). Given a < x < y < b, we can find $c \in (x, y)$ such that f(y) f(x) = f'(c)(y x) > 0. It follows that
- f' > 0 on $(a, b) \implies f$ is strictly increasing on (a, b).

- *f* is increasing if $x < y \implies f(x) \le f(y)$.
- *f* is strictly increasing if $x < y \implies f(x) < f(y)$.
- Assume that f' > 0 on (a, b). Given a < x < y < b, we can find $c \in (x, y)$ such that f(y) f(x) = f'(c)(y x) > 0. It follows that
- f' > 0 on $(a, b) \implies f$ is strictly increasing on (a, b).
- $f' \ge 0$ on $(a, b) \implies f$ is increasing on (a, b).

- *f* is increasing if $x < y \implies f(x) \le f(y)$.
- *f* is strictly increasing if $x < y \implies f(x) < f(y)$.
- Assume that f' > 0 on (a, b). Given a < x < y < b, we can find $c \in (x, y)$ such that f(y) f(x) = f'(c)(y x) > 0. It follows that
- f' > 0 on $(a, b) \implies f$ is strictly increasing on (a, b).
- $f' \ge 0$ on $(a, b) \implies f$ is increasing on (a, b).
- ▶ If *f* is increasing, then $f'(x) = \lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \ge 0$. It follows that

- *f* is increasing if $x < y \implies f(x) \le f(y)$.
- *f* is strictly increasing if $x < y \implies f(x) < f(y)$.
- Assume that f' > 0 on (a, b). Given a < x < y < b, we can find $c \in (x, y)$ such that f(y) f(x) = f'(c)(y x) > 0. It follows that
- f' > 0 on $(a, b) \implies f$ is strictly increasing on (a, b).
- $f' \ge 0$ on $(a, b) \implies f$ is increasing on (a, b).
- ▶ If *f* is increasing, then $f'(x) = \lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \ge 0$. It follows that
- $f' \ge 0$ on $(a, b) \iff f$ is increasing on (a, b).

- *f* is increasing if $x < y \implies f(x) \le f(y)$.
- *f* is strictly increasing if $x < y \implies f(x) < f(y)$.
- Assume that f' > 0 on (a, b). Given a < x < y < b, we can find $c \in (x, y)$ such that f(y) f(x) = f'(c)(y x) > 0. It follows that
- f' > 0 on $(a, b) \implies f$ is strictly increasing on (a, b).
- $f' \ge 0$ on $(a, b) \implies f$ is increasing on (a, b).
- ▶ If *f* is increasing, then $f'(x) = \lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \ge 0$. It follows that
- $f' \ge 0$ on $(a, b) \iff f$ is increasing on (a, b).
- ► $f(x) = x^3$ shows that f' > 0 on $(a, b) \iff f$ is strictly increasing on (a, b).

- *f* is increasing if $x < y \implies f(x) \le f(y)$.
- *f* is strictly increasing if $x < y \implies f(x) < f(y)$.
- Assume that f' > 0 on (a, b). Given a < x < y < b, we can find $c \in (x, y)$ such that f(y) f(x) = f'(c)(y x) > 0. It follows that
- f' > 0 on $(a, b) \implies f$ is strictly increasing on (a, b).
- $f' \ge 0$ on $(a, b) \implies f$ is increasing on (a, b).
- ▶ If *f* is increasing, then $f'(x) = \lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \ge 0$. It follows that
- $f' \ge 0$ on $(a, b) \iff f$ is increasing on (a, b).
- ► $f(x) = x^3$ shows that f' > 0 on $(a, b) \iff f$ is strictly increasing on (a, b).
- Limits do not preserve strict inequalities.

Assume that *c* is a minimum point and that f'(c) exists. Consider $f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$. If *h* is positive, the fraction is positive, and if *h* is negative, the fraction is negative. Since the limit exists, it must be zero.

UiO: University of Oslo Extreme point

- Assume that *c* is a minimum point and that f'(c) exists. Consider $f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$. If *h* is positive, the fraction is positive, and if *h* is negative, the fraction is negative. Since the limit exists, it must be zero.
- Assume that f' exists around c, and f'(x) is positive for x > c and negative for x < c. If x > c, then there is a d between c and x such that f(x) f(c) = f'(d)(x c) > 0. If x < c, then there is a d between x and c such that f(c) f(x) = f'(d)(c x) < 0. It follows that c is a minimum point.</p>

UiO: University of Oslo Extreme point

- Assume that *c* is a minimum point and that f'(c) exists. Consider $f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$. If *h* is positive, the fraction is positive, and if *h* is negative, the fraction is negative. Since the limit exists, it must be zero.
- ► Assume that f' exists around c, and f'(x) is positive for x > c and negative for x < c. If x > c, then there is a d between c and x such that f(x) f(c) = f'(d)(x c) > 0. If x < c, then there is a d between x and c such that f(c) f(x) = f'(d)(c x) < 0. It follows that c is a minimum point.</p>
- ► However, the converse is not always true.

We start with a parabola and add x² sin(1/x) to create an oscillating parabola.

UiO **:** University of Oslo Extreme point 2

- We start with a parabola and add x² sin(1/x) to create an oscillating parabola.
- Since x² + x² sin(1/x)) has infinitely many zeros, we instead start with x² and use f(x) = x²(+1/2 sin(1/x)), which satisfies 1/2 x² ≥ f(x) ≥ 3/2 x².

f obviously has a minimum at x = 0, but it is easy to see that f' is both positive and negative arbitrarily close to x = 0.

- f obviously has a minimum at x = 0, but it is easy to see that f' is both positive and negative arbitrarily close to x = 0.
- We have f'(x) = 4x + 2x sin(1/x) − cos(1/x), and if x is close to zero, the first two terms will be close to zero, too, while the last term will oscillate between 1 and −1.

If f' is positive on (a, b), then f is increasing on (a, b). But what if we only know that f'(c) > 0? Can we say that f is increasing on an interval around c?

- If f' is positive on (a, b), then f is increasing on (a, b). But what if we only know that f'(c) > 0? Can we say that f is increasing on an interval around c?
- ▶ We start with a straight line and add $x^2 \sin(1/x)$ to create an oscillating line. It turns out that it will be easer if we add $2x^2 \sin(1/x)$, so we set $f(x) = x + 2x^2 \sin(1/x)$.

- If f' is positive on (a, b), then f is increasing on (a, b). But what if we only know that f'(c) > 0? Can we say that f is increasing on an interval around c?
- ▶ We start with a straight line and add $x^2 \sin(1/x)$ to create an oscillating line. It turns out that it will be easer if we add $2x^2 \sin(1/x)$, so we set $f(x) = x + 2x^2 \sin(1/x)$.
- Then f'(x) = 1 + 4x sin(1/x) 2 cos(1/x), and when x is close to zero, then will oscillate between 3 and -1, so f' will be both positive and negative in every neighborhood of 0.

UiO: University of Oslo Point of inflection

We say that c is a point of inflection if f has a tangent line at c and f" changes sign at c. (Some people only require that f should be continuous at c.)

- We say that c is a point of inflection if f has a tangent line at c and f" changes sign at c. (Some people only require that f should be continuous at c.)
- Let us consider some examples.

- We say that c is a point of inflection if f has a tangent line at c and f" changes sign at c. (Some people only require that f should be continuous at c.)
- Let us consider some examples.
- ► f(x) = x³ has f'(0) = 0, but 0 is not an extremum, but a point of inflection.

UiO: University of Oslo Point of inflection

- We say that c is a point of inflection if f has a tangent line at c and f" changes sign at c. (Some people only require that f should be continuous at c.)
- Let us consider some examples.
- ► f(x) = x³ has f'(0) = 0, but 0 is not an extremum, but a point of inflection.
- ► f(x) = x³ + x shows that f' does not have to be 0 at a point of inflection.

 f(x) = x^{1/3} has a point of inflection at 0, has a tangent line at 0, but f'(0) and f''(0) do not exist. (Vertical tangent line. Just bend a bit, and both derivatives will exist.)

 f(x) = x^{1/3} has a point of inflection at 0, has a tangent line at 0, but f'(0) and f''(0) do not exist. (Vertical tangent line. Just bend a bit, and both derivatives will exist.)

$$f(x) = \begin{cases} x^2 \text{ if } x \ge 0, \\ -x^2 \text{ if } x < 0 \end{cases}$$

has a point of inflection at 0, and f'(0) exists, but f''(0) does not exist. (First derivatives match, so we get a tangent line, but second derivatives do not match.)

 f(x) = x^{1/3} has a point of inflection at 0, has a tangent line at 0, but f'(0) and f''(0) do not exist. (Vertical tangent line. Just bend a bit, and both derivatives will exist.)

$$f(x) = \begin{cases} x^2 \text{ if } x \ge 0, \\ -x^2 \text{ if } x < 0 \end{cases}$$

has a point of inflection at 0, and f'(0) exists, but f''(0) does not exist. (First derivatives match, so we get a tangent line, but second derivatives do not match.)

$$f(x) = \begin{cases} x^2 + x \text{ if } x \ge 0, \\ -x^2 - 2x \text{ if } x < 0 \end{cases}$$

does not have a tangent line at 0, since the first derivatives do not match. However, the second derivative changes sign at 0. Is this a point of inflection? I have chosen to not include this, but some people do.

1. If *c* is a point of inflection and f''(c) exists, then f''(c) = 0.

- 1. If *c* is a point of inflection and f''(c) exists, then f''(c) = 0.
- 2. If *c* is a point of inflection, then *c* is an isolated extremum of *f*'.

- 1. If *c* is a point of inflection and f''(c) exists, then f''(c) = 0.
- 2. If *c* is a point of inflection, then *c* is an isolated extremum of *f*'.
- 3. If *c* is a point of inflection, then the curve lies on different sides of the tangent line at *c*.

$\begin{array}{c} {\rm UiO}\, \hbox{$`$$ University of Oslo}\\ Point of inflection 4 \end{array}$

Proof of 3: We use MVT go get x₁ between c and x with

$$\frac{f(x)-f(c)}{x-c}=f'(x_1).$$

or

$$f(x) = f(c) + f'(x_1)(x - c).$$

Proof of 3: We use MVT go get x₁ between c and x with

$$\frac{f(x)-f(c)}{x-c}=f'(x_1),$$

or

$$f(x) = f(c) + f'(x_1)(x - c).$$

We now use MVT again to get x₂ between c and x₁ with

$$\frac{f'(x_1)-f'(c)}{x_1-c}=f''(x_2),$$

or

$$f'(x_1) = f'(c) + f''(x_2)(x_1 - c).$$

Proof of 3: We use MVT go get x₁ between c and x with

$$\frac{f(x)-f(c)}{x-c}=f'(x_1),$$

or

$$f(x) = f(c) + f'(x_1)(x - c).$$

▶ We now use MVT again to get x₂ between c and x₁ with

$$\frac{f'(x_1)-f'(c)}{x_1-c}=f''(x_2),$$

or

$$f'(x_1) = f'(c) + f''(x_2)(x_1 - c).$$

Combining this, we get

$$f(x) = f(c) + f'(x_1)(x - c)$$

= $f(c) + f'(c)(x - c) + f''(x_2)(x - c)(x_1 - c).$

$\begin{array}{c} {\rm UiO}\,\text{$`$ University of Oslo}\\ Point of inflection 5 \end{array}$

► The tangent line to f(x) at c is t(x) = f(c) + f'(c)(x - c), so the distance between f and the tangent is $f'(x_2)(x - c)(x_1 - c)$.

- ► The tangent line to f(x) at c is t(x) = f(c) + f'(c)(x c), so the distance between f and the tangent is $f'(x_2)(x - c)(x_1 - c)$.
- ► Since (x₁ c) and (x₁ c) have the same sign, their product is positive. But f''(x) changes sign at c, so f(x) will lie on different sides of the tangent at c.

Converse to 1 is false: f(x) = x⁴ has f''(0) = 0, but f''(x) ≥ 0.

Converse to 1 is false: f(x) = x⁴ has f''(0) = 0, but f''(x) ≥ 0.

• Converse to 2 is false: $f(x) = x^3 + x^4 \sin(1/x)$ has

$$\begin{aligned} f'(x) &= 3x^2 - x^2 \cos(1/x) + 4x^3 \sin(1/x) \\ &= x^2 (3 - \cos(1/x) + 4x \sin(1/x) \ge 0 \end{aligned}$$

in a neighborhood of 0, so 0 is an isolated minimum of f'(x). We have f''(0) = 0, but $f''(x) = 6x - \sin(1/x) - 6x \cos(1/x) + 12x^2 \sin(1/x)$ does not change sign.

Converse to 1 is false: f(x) = x⁴ has f''(0) = 0, but f''(x) ≥ 0.

• Converse to 2 is false: $f(x) = x^3 + x^4 \sin(1/x)$ has

$$\begin{aligned} f'(x) &= 3x^2 - x^2 \cos(1/x) + 4x^3 \sin(1/x) \\ &= x^2 (3 - \cos(1/x) + 4x \sin(1/x) \ge 0 \end{aligned}$$

in a neighborhood of 0, so 0 is an isolated minimum of f'(x). We have f''(0) = 0, but $f''(x) = 6x - \sin(1/x) - 6x \cos(1/x) + 12x^2 \sin(1/x)$ does not change sign.

$\begin{array}{c} {\rm UiO}\,\text{{\rm $`$University of Oslo}}\\ Point of inflection 7 \end{array}$

• We need to "integrate" the example $2x^2 + x^2 \sin(1/x)$. Since the derivative of 1/x is $-1/x^2$, we try

$$f(x) = x^3 + x^4 \sin(1/x),$$

$$f'(x) = 3x^2 - x^2 \cos(1/x) + 4x^3 \sin(1/x)$$

$$= x^2(3 - \cos(1/x) + 4x \sin(1/x)).$$

• We need to "integrate" the example $2x^2 + x^2 \sin(1/x)$. Since the derivative of 1/x is $-1/x^2$, we try

$$f(x) = x^3 + x^4 \sin(1/x),$$

$$f'(x) = 3x^2 - x^2 \cos(1/x) + 4x^3 \sin(1/x),$$

$$= x^2(3 - \cos(1/x) + 4x \sin(1/x)).$$

The first two terms give us the shape we want, and the last terms is so small that we can ignore it.

Converse to 3 is false:
f(x) = x³ + 1/2 x³ sin(1/x) = x³(1 + 1/2 sin(1/x)) lies
below the tangent (y = 0) on one side and above the
tangent on another, but
f''(x) = 6x + 3x sin(1/x) - cos(1/x) - 1/2(1/x) sin(1/x)
does not change sign, since when x is small, the last term
will be oscillate wildly.

Converse to 3 is false:
f(x) = x³ + 1/2 x³ sin(1/x) = x³(1 + 1/2 sin(1/x)) lies
below the tangent (y = 0) on one side and above the
tangent on another, but
f''(x) = 6x + 3x sin(1/x) - cos(1/x) - 1/2(1/x) sin(1/x)
does not change sign, since when x is small, the last term
will be oscillate wildly.

► The cubic terms gives the desired shape of the curve, and since the derivative of 1/x is -1/x², we will get a term of the form (1/x) sin(1/x) in f''(x), which will make it oscillate wildly.

Converse to 3 is false:
f(x) = x³ + 1/2 x³ sin(1/x) = x³(1 + 1/2 sin(1/x)) lies
below the tangent (y = 0) on one side and above the
tangent on another, but
f''(x) = 6x + 3x sin(1/x) - cos(1/x) - 1/2(1/x) sin(1/x)
does not change sign, since when x is small, the last term
will be oscillate wildly.

► The cubic terms gives the desired shape of the curve, and since the derivative of 1/x is -1/x², we will get a term of the form (1/x) sin(1/x) in f''(x), which will make it oscillate wildly.