

$\mathrm{UiO}:$ University of Oslo

Mean and Extreme

Helmer Aslaksen

Dept. of Teacher Education \& Dept. of Mathematics
University of Oslo
helmer.aslaksen@gmail.com
www.math.nus.edu.sg/aslaksen/

- Some topics you can take straight to the classroom.
- Some topics you can take straight to the classroom.
- Some topics will help you answer questions that you may be asked once in a while by strong pupils.
- Some topics you can take straight to the classroom.
- Some topics will help you answer questions that you may be asked once in a while by strong pupils.
- Some topics you will probably never discuss with any pupils, but knowing it will help your own understanding of the topics.
- Some topics you can take straight to the classroom.
- Some topics will help you answer questions that you may be asked once in a while by strong pupils.
- Some topics you will probably never discuss with any pupils, but knowing it will help your own understanding of the topics.
- There should be a line of sight back towards school mathematics.

UiO : University of Oslo
Arithmetic series

UiO : University of Oslo Arithmetic series

- Why is an arithmetic series called arithmetic?
- Why is an arithmetic series called arithmetic?
- We define the arithmetic mean to be

$$
\mathrm{AM}(x, y)=\frac{1}{2}(x+y)
$$

- Why is an arithmetic series called arithmetic?
- We define the arithmetic mean to be

$$
\operatorname{AM}(x, y)=\frac{1}{2}(x+y)
$$

- In an arithmetic series, every term is the arithmetic mean of the two surrounding terms.

$$
\frac{1}{2}\left(a_{n+1}+a_{n-1}\right)=\frac{1}{2}\left(a_{n}+d+a_{n}-d\right)=\frac{1}{2} 2 a_{n}=a_{n} .
$$

UiO : University of Oslo

Geometric series

- Why is a geometric series called geometric?

UiO : University of Oslo
 Geometric series

- Why is a geometric series called geometric?
- We define the geometric mean to be

$$
\mathrm{GM}(x, y)=(x y)^{1 / 2}
$$

$\mathrm{UiO}:$ University of Oslo
 Geometric series

- Why is a geometric series called geometric?
- We define the geometric mean to be

$$
\mathrm{GM}(x, y)=(x y)^{1 / 2}
$$

- In a geometric series (with positive terms), every term is the geometric mean of the two surrounding terms.

UiO : University of Oslo

Geometric series

- Why is a geometric series called geometric?
- We define the geometric mean to be

$$
\mathrm{GM}(x, y)=(x y)^{1 / 2}
$$

- In a geometric series (with positive terms), every term is the geometric mean of the two surrounding terms.

$$
\left(a_{n+1} a_{n-1}\right)^{1 / 2}=\left[\left(a_{n} r\right)\left(a_{n} / r\right)\right]^{1 / 2}=\left(a_{n}^{2}\right)^{1 / 2}=a_{n}
$$

UiO : University of Oslo
Harmonic series

- Why is the harmonic series,

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

called harmonic?

Harmonic series

- Why is the harmonic series,

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

called harmonic?

- We define the harmonic mean to be

$$
\mathrm{HM}(x, y)=\frac{2}{\frac{1}{x}+\frac{1}{y}}
$$

Harmonic series

- Why is the harmonic series,

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

called harmonic?

- We define the harmonic mean to be

$$
\mathrm{HM}(x, y)=\frac{2}{\frac{1}{x}+\frac{1}{y}}
$$

- In the harmonic series, every term is the harmonic mean of the two surrounding terms.

Harmonic series

- Why is the harmonic series,

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

called harmonic?

- We define the harmonic mean to be

$$
\mathrm{HM}(x, y)=\frac{2}{\frac{1}{x}+\frac{1}{y}}
$$

- In the harmonic series, every term is the harmonic mean of the two surrounding terms.

$$
\frac{2}{\frac{1}{1 /(n+1)}+\frac{1}{1 /(n-1)}}=\frac{2}{n+1+n-1}=\frac{2}{2 n}=\frac{1}{n} .
$$

UiO : University of Oslo
 Confusing means - Simpson's paradox

Confusing means - Simpson's paradox

- In 1973 UC Berkeley admitted 44\% of males and 35\% of females who applied to grad school. The tables show admission data from the six largest departments.

Department	Male acceptance rate	Female acceptance rate
A	62%	82%
B	63%	68%
C	37%	34%
D	33%	35%
E	28%	24%
F	6%	7%

Department	Male		Female	
	Applicants	$\%$	Applicants	$\%$
A	825	62%	108	82%
B	560	63%	25	68%
C	325	37%	593	34%
D	417	33%	375	35%
E	191	28%	393	24%
F	373	6%	341	7%

UiO : University of Oslo
 Confusing means - Simpson's paradox 2

UiO : University of Oslo
 Confusíng means - Simpson's paradox 2

- You teach a class with 20 strong students and 5 weak students. At the final exam, the strong students get an average of 80 points and the weak students get an average of 50 .

UiO: University of Oslo
 Confusing means - Simpson's paradox 2

- You teach a class with 20 strong students and 5 weak students. At the final exam, the strong students get an average of 80 points and the weak students get an average of 50 .
- Your Principal is impressed that all the weak students passed, and next year you get a class with 15 strong students and 10 weak students. This year the strong students increase their average to 85, and the weak students increase their average to 55.

UiO : University of Oslo
 Confusing means - Simpson's paradox 2

- You teach a class with 20 strong students and 5 weak students. At the final exam, the strong students get an average of 80 points and the weak students get an average of 50 .
- Your Principal is impressed that all the weak students passed, and next year you get a class with 15 strong students and 10 weak students. This year the strong students increase their average to 85 , and the weak students increase their average to 55.
- You are quite proud of yourself, but the Principal calls you in and is unhappy because the overall average has dropped from $(20 \cdot 80+5 \cdot 50) / 25=74$ to $(15 \cdot 85+10 \cdot 55) / 25=73$.

$\mathrm{UiO}:$ University of Oslo
 Confusing means - Simpson's paradox 2

- You teach a class with 20 strong students and 5 weak students. At the final exam, the strong students get an average of 80 points and the weak students get an average of 50 .
- Your Principal is impressed that all the weak students passed, and next year you get a class with 15 strong students and 10 weak students. This year the strong students increase their average to 85, and the weak students increase their average to 55.
- You are quite proud of yourself, but the Principal calls you in and is unhappy because the overall average has dropped from $(20 \cdot 80+5 \cdot 50) / 25=74$ to $(15 \cdot 85+10 \cdot 55) / 25=73$.
- The arithmetic mean may look innocent, but can be devious.

UiO : University of Oslo
 What is the meaning of the geometric mean?

What is the meaning of the geometric mean?

- Given a rectangle with sides x and y, we want to find a square with the same area. What is the side of the square?

What is the meaning of the geometric mean?

- Given a rectangle with sides x and y, we want to find a square with the same area. What is the side of the square?
- $z=\sqrt{x y}=\operatorname{GM}(x, y)$.

UiO : University of Oslo
 What is the meaning of the harmonic mean?

What is the meaning of the harmonic mean?

- You drive to work during rush hour with an average speed of $30 \mathrm{~km} / \mathrm{h}$. Going home you manage an average speed of $60 \mathrm{~km} / \mathrm{h}$. What was your average speed for the whole trip?

What is the meaning of the harmonic mean?

- You drive to work during rush hour with an average speed of $30 \mathrm{~km} / \mathrm{h}$. Going home you manage an average speed of $60 \mathrm{~km} / \mathrm{h}$. What was your average speed for the whole trip?
- Assume that the distance is d. Then your average speed was

$$
\frac{2 d}{d / 30+d / 60}=\frac{2}{1 / 30+1 / 60}=\frac{2 \cdot 60}{2+1}=40=H(30,60)
$$

What is the meaning of the harmonic mean?

- You drive to work during rush hour with an average speed of $30 \mathrm{~km} / \mathrm{h}$. Going home you manage an average speed of $60 \mathrm{~km} / \mathrm{h}$. What was your average speed for the whole trip?
- Assume that the distance is d. Then your average speed was

$$
\frac{2 d}{d / 30+d / 60}=\frac{2}{1 / 30+1 / 60}=\frac{2 \cdot 60}{2+1}=40=H(30,60)
$$

- The term harmonic is related to music theory.

UiO : University of Oslo

The harmonic series diverges

The harmonic series diverges

- This was shown by Nicole Oresme around 1350.

$$
\begin{array}{r}
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\cdots \\
> \\
1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{16}+\cdots
\end{array}
$$

The harmonic series diverges

- This was shown by Nicole Oresme around 1350.

$$
\begin{array}{r}
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\cdots \\
>1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{16}+\cdots
\end{array}
$$

- This argument shows that

$$
\sum_{n=1}^{2^{k}} \frac{1}{n}>1+\frac{k}{2}
$$

and we see that the series diverges.

UiO : University of Oslo
The AGH inequality

$\operatorname{AM}(a, b) \geq \mathrm{GM}(a, b) \geq \mathrm{HM}(a, b)$.

UiO : University of Oslo

Proof of the AGH inequality

$$
\begin{aligned}
& \left(\frac{a+b}{2}\right)^{2}=G^{2}+\left(a-\frac{a+b}{2}\right)^{2} \\
& \frac{(a+b)^{2}}{4}=G^{2}+\frac{(a-b)^{2}}{4} \\
& (a+b)^{2}=4 G^{2}+(a-b)^{2} \\
& 2 a b=4 G^{2}-2 a b \\
& G^{2}=a b \\
& G=\sqrt{a b}=G M(a, b) \text {. }
\end{aligned}
$$

Proof of the AGH inequality 2

UiO : University of Oslo

Proof of the AGH inequality 2

Proof of the AGH inequality 2

- By similar triangles $A / G=G / H$ or $G^{2}=A H$. Hence

$$
H=\frac{G^{2}}{A}=\frac{a b}{\frac{a+b}{2}}=\frac{2}{\frac{a+b}{a b}}=\frac{2}{\frac{1}{a}+\frac{1}{b}}=\mathrm{HM}(a, b)
$$

UiO : University of Oslo
Maximum volume of a cut off box

UiO : University of Oslo

Maximum volume of a cut off box

- Consider a rectangle of width 1 and length L. We cut off squares of side x in each corner and fold to get a box of volume

$$
V(L, x)=x(L-2 x)(1-2 x)
$$

UiO : University of Oslo

Maximum volume of a cut off box

- Consider a rectangle of width 1 and length L. We cut off squares of side x in each corner and fold to get a box of volume

$$
V(L, x)=x(L-2 x)(1-2 x)
$$

- If we solve $V^{\prime}(x)=0$ we get

$$
x=\frac{L+1-\sqrt{(L+1)^{2}-3 L}}{6} .
$$

UiO : University of Oslo

Maximum volume of a cut off box

- Consider a rectangle of width 1 and length L. We cut off squares of side x in each corner and fold to get a box of volume

$$
V(L, x)=x(L-2 x)(1-2 x) .
$$

- If we solve $V^{\prime}(x)=0$ we get

$$
x=\frac{L+1-\sqrt{(L+1)^{2}-3 L}}{6} .
$$

- If we set $L=1$, we get

$$
x=\frac{1+1-\sqrt{(1+1)^{2}-3 \cdot 1}}{6}=\frac{2-\sqrt{2^{2}-3}}{6}=\frac{1}{6}
$$

- In that case the area of the base is $(2 / 3)^{2}=4 / 9$, while the area of the side wall equals $4 \cdot 1 / 6 \cdot 2 / 3=4 / 9$.

UiO : University of Oslo

Maximum volume of a cut off box 2

- In that case the area of the base is $(2 / 3)^{2}=4 / 9$, while the area of the side wall equals $4 \cdot 1 / 6 \cdot 2 / 3=4 / 9$.
- Is it a coincidence that these two areas are equal?

UiO: University of Oslo
 Maximum volume of a cut off box 2

- In that case the area of the base is $(2 / 3)^{2}=4 / 9$, while the area of the side wall equals $4 \cdot 1 / 6 \cdot 2 / 3=4 / 9$.
- Is it a coincidence that these two areas are equal?
- Consider a convex, closed curve W, and let $W(t)$ be the curve obtained by pushing W inward along the normal line a distance t. We can then "fold" up to get a box.
- In that case the area of the base is $(2 / 3)^{2}=4 / 9$, while the area of the side wall equals $4 \cdot 1 / 6 \cdot 2 / 3=4 / 9$.
- Is it a coincidence that these two areas are equal?
- Consider a convex, closed curve W, and let $W(t)$ be the curve obtained by pushing W inward along the normal line a distance t. We can then "fold" up to get a box.
- Let $A(t)$ be the area of the region inside $W(t)$, let $P(t)$ be the perimeter of $W(t)$ and let $V(t)$ be the volume of the box.
- In that case the area of the base is $(2 / 3)^{2}=4 / 9$, while the area of the side wall equals $4 \cdot 1 / 6 \cdot 2 / 3=4 / 9$.
- Is it a coincidence that these two areas are equal?
- Consider a convex, closed curve W, and let $W(t)$ be the curve obtained by pushing W inward along the normal line a distance t. We can then "fold" up to get a box.
- Let $A(t)$ be the area of the region inside $W(t)$, let $P(t)$ be the perimeter of $W(t)$ and let $V(t)$ be the volume of the box.
- I claim that $A^{\prime}(t)=-P(t)$.

UiO: University of Oslo
 Maximum volume of a cut off box 3

- We have $A^{\prime}(t)=\lim _{h \rightarrow 0} \frac{A(t+h)-A(t)}{h}$, and we can interpret $A(t+h)-A(t)$ as the negative of the area of a "ring" of thickness h. Since the area of the ring will have area approximately equal to $P(t) t$, we get that

$$
A^{\prime}(t)=\lim _{h \rightarrow 0} \frac{A(t+h)-A(t)}{h} \approx \lim _{h \rightarrow 0} \frac{-P(t) h}{h}=-P(t)
$$

UiO : University of Oslo
 Maximum volume of a cut off box 3

- We have $A^{\prime}(t)=\lim _{h \rightarrow 0} \frac{A(t+h)-A(t)}{h}$, and we can interpret $A(t+h)-A(t)$ as the negative of the area of a "ring" of thickness h. Since the area of the ring will have area approximately equal to $P(t) t$, we get that

$$
A^{\prime}(t)=\lim _{h \rightarrow 0} \frac{A(t+h)-A(t)}{h} \approx \lim _{h \rightarrow 0} \frac{-P(t) h}{h}=-P(t)
$$

- We have $V(t)=A(t) t$, so $V^{\prime}(t)=A^{\prime}(t) t+A(t)=-P(t) t+A(t)=0$ precisely when the area of the base equals the area of the wall.

UiO : University of Oslo
 Source of counterexamples

UiO : University of Oslo
 Source of counterexamples

$$
f_{n}(x)= \begin{cases}x^{n} \sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

UiO : University of Oslo
 Source of counterexamples

$$
f_{n}(x)= \begin{cases}x^{n} \sin (1 / x) & \text { if } x \neq 0, \\ 0 & \text { if } x=0 .\end{cases}
$$

- Note that

$$
\lim _{x \rightarrow \infty} x \sin (1 / x)=\lim _{x \rightarrow \infty} \frac{\sin (1 / x)}{1 / x}=\lim _{y \rightarrow 0} \frac{\sin (y)}{y}=1 .
$$

UiO : University of Oslo
$\sin (1 / x)$

UiO : University of Oslo $\sin (1 / x)$

$$
f_{0}(x)= \begin{cases}\sin (1 / x) & \text { if } x \neq 0, \\ 0 & \text { if } x=0\end{cases}
$$

UiO : University of Oslo $\sin (1 / x)$

$$
f_{0}(x)= \begin{cases}\sin (1 / x) & \text { if } x \neq 0, \\ 0 & \text { if } x=0\end{cases}
$$

- f_{0} is not continuous at $x=0$, since $\lim _{x \rightarrow 0} f_{0}(x)$ does not exist.

UiO : University of Oslo $x \sin (1 / x)$

UiO : University of Oslo $x \sin (1 / x)$

$$
f_{1}(x)= \begin{cases}x \sin (1 / x) & \text { if } x \neq 0, \\ 0 & \text { if } x=0 .\end{cases}
$$

UiO : University of Oslo

$$
f_{1}(x)= \begin{cases}x \sin (1 / x) & \text { if } x \neq 0, \\ 0 & \text { if } x=0 .\end{cases}
$$

- Remember that $\lim _{x \rightarrow \infty} f_{1}(x)=1$.

UiO : University of Oslo
$x \sin (1 / x)$ part 2

- f_{1} is continuous, since it is squeezed by $\pm x$, but

$$
\lim _{x \rightarrow 0} \frac{f_{1}(x)-f_{1}(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x \sin (1 / x)-0}{x-0}=\lim _{x \rightarrow 0} \sin (1 / x)
$$

does not exist, so f_{1} is not differentiable at $x=0$.

UiO: University of Oslo
$x^{2} \sin (1 / x)$

UiO: University of Oslo
$x^{2} \sin (1 / x)$

$$
f_{2}(x)= \begin{cases}x^{2} \sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

$$
f_{2}(x)= \begin{cases}x^{2} \sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

- Setting $y=1 / x$ and using L'Hôpital's rule, we get

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(x^{2} \sin (1 / x)-x\right)=\lim _{y \rightarrow 0}\left(\sin y / y^{2}-1 / y\right)= \\
& \lim _{y \rightarrow 0} \frac{\sin y-y}{y^{2}}=\lim _{y \rightarrow 0} \frac{\cos y-1}{2 y}=\lim _{y \rightarrow 0} \frac{-\sin y}{2}=0
\end{aligned}
$$

$$
f_{2}(x)= \begin{cases}x^{2} \sin (1 / x) & \text { if } x \neq 0, \\ 0 & \text { if } x=0\end{cases}
$$

- Setting $y=1 / x$ and using L'Hôpital's rule, we get

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(x^{2} \sin (1 / x)-x\right)=\lim _{y \rightarrow 0}\left(\sin y / y^{2}-1 / y\right)= \\
& \lim _{y \rightarrow 0} \frac{\sin y-y}{y^{2}}=\lim _{y \rightarrow 0} \frac{\cos y-1}{2 y}=\lim _{y \rightarrow 0} \frac{-\sin y}{2}=0
\end{aligned}
$$

- f_{2} is differentiable, since it is squeezed by $\pm x^{2}$.

UiO: University of Oslo
$x^{2} \sin (1 / x)$ part 2

$$
f_{2}^{\prime}(0)=\lim _{x \rightarrow 0} \frac{x^{2} \sin (1 / x)-0}{x-0}=\lim _{x \rightarrow 0} x \sin (1 / x)=0
$$

However, for $x \neq 0$ we have $f_{2}^{\prime}(x)=2 x \sin (1 / x)-\cos (1 / x)$, and

$$
\lim _{x \rightarrow 0} f_{2}^{\prime}(x)=\lim _{x \rightarrow 0}(2 x \sin (1 / x)-\cos (1 / x))
$$

does not exist.

$$
f_{2}^{\prime}(0)=\lim _{x \rightarrow 0} \frac{x^{2} \sin (1 / x)-0}{x-0}=\lim _{x \rightarrow 0} x \sin (1 / x)=0
$$

However, for $x \neq 0$ we have $f_{2}^{\prime}(x)=2 x \sin (1 / x)-\cos (1 / x)$, and

$$
\lim _{x \rightarrow 0} f_{2}^{\prime}(x)=\lim _{x \rightarrow 0}(2 x \sin (1 / x)-\cos (1 / x))
$$

does not exist.

- So f_{2} is differentiable, but not continuously differentiable!

$$
f_{2}^{\prime}(0)=\lim _{x \rightarrow 0} \frac{x^{2} \sin (1 / x)-0}{x-0}=\lim _{x \rightarrow 0} x \sin (1 / x)=0
$$

However, for $x \neq 0$ we have $f_{2}^{\prime}(x)=2 x \sin (1 / x)-\cos (1 / x)$, and

$$
\lim _{x \rightarrow 0} f_{2}^{\prime}(x)=\lim _{x \rightarrow 0}(2 x \sin (1 / x)-\cos (1 / x))
$$

does not exist.

- So f_{2} is differentiable, but not continuously differentiable!
- This is the mother of all counterexamples!
- Mean Value Theorem: Assume that f is differentiable on (a, b) and continuous on $[a, b]$. Then there is $c \in(a, b)$ such that

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

UiO : University of Oslo

Monotonicity 2

- f is increasing if $x<y \Longrightarrow f(x) \leq f(y)$.
- f is increasing if $x<y \Longrightarrow f(x) \leq f(y)$.
- f is strictly increasing if $x<y \Longrightarrow f(x)<f(y)$.
- f is increasing if $x<y \Longrightarrow f(x) \leq f(y)$.
- f is strictly increasing if $x<y \Longrightarrow f(x)<f(y)$.
- Assume that $f^{\prime}>0$ on (a, b). Given $a<x<y<b$, we can find $c \in(x, y)$ such that $f(y)-f(x)=f^{\prime}(c)(y-x)>0$. It follows that
- f is increasing if $x<y \Longrightarrow f(x) \leq f(y)$.
- f is strictly increasing if $x<y \Longrightarrow f(x)<f(y)$.
- Assume that $f^{\prime}>0$ on (a, b). Given $a<x<y<b$, we can find $c \in(x, y)$ such that $f(y)-f(x)=f^{\prime}(c)(y-x)>0$. It follows that
- $f^{\prime}>0$ on $(a, b) \Longrightarrow f$ is strictly increasing on (a, b).
- f is increasing if $x<y \Longrightarrow f(x) \leq f(y)$.
- f is strictly increasing if $x<y \Longrightarrow f(x)<f(y)$.
- Assume that $f^{\prime}>0$ on (a, b). Given $a<x<y<b$, we can find $c \in(x, y)$ such that $f(y)-f(x)=f^{\prime}(c)(y-x)>0$. It follows that
- $f^{\prime}>0$ on $(a, b) \Longrightarrow f$ is strictly increasing on (a, b).
- $f^{\prime} \geq 0$ on $(a, b) \Longrightarrow f$ is increasing on (a, b).
- f is increasing if $x<y \Longrightarrow f(x) \leq f(y)$.
- f is strictly increasing if $x<y \Longrightarrow f(x)<f(y)$.
- Assume that $f^{\prime}>0$ on (a, b). Given $a<x<y<b$, we can find $c \in(x, y)$ such that $f(y)-f(x)=f^{\prime}(c)(y-x)>0$. It follows that
- $f^{\prime}>0$ on $(a, b) \Longrightarrow f$ is strictly increasing on (a, b).
- $f^{\prime} \geq 0$ on $(a, b) \Longrightarrow f$ is increasing on (a, b).
- If f is increasing, then $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \geq 0$. It follows that
- f is increasing if $x<y \Longrightarrow f(x) \leq f(y)$.
- f is strictly increasing if $x<y \Longrightarrow f(x)<f(y)$.
- Assume that $f^{\prime}>0$ on (a, b). Given $a<x<y<b$, we can find $c \in(x, y)$ such that $f(y)-f(x)=f^{\prime}(c)(y-x)>0$. It follows that
- $f^{\prime}>0$ on $(a, b) \Longrightarrow f$ is strictly increasing on (a, b).
- $f^{\prime} \geq 0$ on $(a, b) \Longrightarrow f$ is increasing on (a, b).
- If f is increasing, then $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \geq 0$. It follows that
- $f^{\prime} \geq 0$ on $(a, b) \Longleftarrow f$ is increasing on (a, b).
- f is increasing if $x<y \Longrightarrow f(x) \leq f(y)$.
- f is strictly increasing if $x<y \Longrightarrow f(x)<f(y)$.
- Assume that $f^{\prime}>0$ on (a, b). Given $a<x<y<b$, we can find $c \in(x, y)$ such that $f(y)-f(x)=f^{\prime}(c)(y-x)>0$. It follows that
- $f^{\prime}>0$ on $(a, b) \Longrightarrow f$ is strictly increasing on (a, b).
- $f^{\prime} \geq 0$ on $(a, b) \Longrightarrow f$ is increasing on (a, b).
- If f is increasing, then $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \geq 0$. It follows that
- $f^{\prime} \geq 0$ on $(a, b) \Longleftarrow f$ is increasing on (a, b).
- $f(x)=x^{3}$ shows that $f^{\prime}>0$ on $(a, b) \nLeftarrow f$ is strictly increasing on (a, b).
- f is increasing if $x<y \Longrightarrow f(x) \leq f(y)$.
- f is strictly increasing if $x<y \Longrightarrow f(x)<f(y)$.
- Assume that $f^{\prime}>0$ on (a, b). Given $a<x<y<b$, we can find $c \in(x, y)$ such that $f(y)-f(x)=f^{\prime}(c)(y-x)>0$. It follows that
- $f^{\prime}>0$ on $(a, b) \Longrightarrow f$ is strictly increasing on (a, b).
- $f^{\prime} \geq 0$ on $(a, b) \Longrightarrow f$ is increasing on (a, b).
- If f is increasing, then $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \geq 0$. It follows that
- $f^{\prime} \geq 0$ on $(a, b) \Longleftarrow f$ is increasing on (a, b).
- $f(x)=x^{3}$ shows that $f^{\prime}>0$ on $(a, b) \nLeftarrow f$ is strictly increasing on (a, b).
- Limits do not preserve strict inequalities.

UiO : University of Oslo
Extreme point

- Assume that c is a minimum point and that $f^{\prime}(c)$ exists. Consider $f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$. If h is positive, the fraction is positive, and if h is negative, the fraction is negative. Since the limit exists, it must be zero.
- Assume that c is a minimum point and that $f^{\prime}(c)$ exists. Consider $f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$. If h is positive, the fraction is positive, and if h is negative, the fraction is negative. Since the limit exists, it must be zero.
- Assume that f^{\prime} exists around c, and $f^{\prime}(x)$ is positive for $x>c$ and negative for $x<c$. If $x>c$, then there is a d between c and x such that $f(x)-f(c)=f^{\prime}(d)(x-c)>0$. If $x<c$, then there is a d between x and c such that $f(c)-f(x)=f^{\prime}(d)(c-x)<0$. It follows that c is a minimum point.
- Assume that c is a minimum point and that $f^{\prime}(c)$ exists. Consider $f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$. If h is positive, the fraction is positive, and if h is negative, the fraction is negative. Since the limit exists, it must be zero.
- Assume that f^{\prime} exists around c, and $f^{\prime}(x)$ is positive for $x>c$ and negative for $x<c$. If $x>c$, then there is a d between c and x such that $f(x)-f(c)=f^{\prime}(d)(x-c)>0$. If $x<c$, then there is a d between x and c such that $f(c)-f(x)=f^{\prime}(d)(c-x)<0$. It follows that c is a minimum point.
- However, the converse is not always true.

UiO : University of Oslo
Extreme point 2

UiO : University of Oslo

 Extreme point 2- We start with a parabola and add $x^{2} \sin (1 / x)$ to create an oscillating parabola.

Extreme point 2

- We start with a parabola and add $x^{2} \sin (1 / x)$ to create an oscillating parabola.
- Since $\left.x^{2}+x^{2} \sin (1 / x)\right)$ has infinitely many zeros, we instead start with x^{2} and use $f(x)=x^{2}(+1 / 2 \sin (1 / x))$, which satisfies $1 / 2 x^{2} \geq f(x) \geq 3 / 2 x^{2}$.

UiO : University of Oslo
Extreme point 3

- f obviously has a minimum at $x=0$, but it is easy to see that f^{\prime} is both positive and negative arbitrarily close to $x=0$.

Extreme point 3

- f obviously has a minimum at $x=0$, but it is easy to see that f^{\prime} is both positive and negative arbitrarily close to $x=0$.
- We have $f^{\prime}(x)=4 x+2 x \sin (1 / x)-\cos (1 / x)$, and if x is close to zero, the first two terms will be close to zero, too, while the last term will oscillate between 1 and -1 .

UiO : University of Oslo
Increasing

- If f^{\prime} is positive on (a, b), then f is increasing on (a, b). But what if we only know that $f^{\prime}(c)>0$? Can we say that f is increasing on an interval around c ?
- If f^{\prime} is positive on (a, b), then f is increasing on (a, b). But what if we only know that $f^{\prime}(c)>0$? Can we say that f is increasing on an interval around c ?
- We start with a straight line and add $x^{2} \sin (1 / x)$ to create an oscillating line. It turns out that it will be easer if we add $2 x^{2} \sin (1 / x)$, so we set $f(x)=x+2 x^{2} \sin (1 / x)$.
- If f^{\prime} is positive on (a, b), then f is increasing on (a, b). But what if we only know that $f^{\prime}(c)>0$? Can we say that f is increasing on an interval around c ?
- We start with a straight line and add $x^{2} \sin (1 / x)$ to create an oscillating line. It turns out that it will be easer if we add $2 x^{2} \sin (1 / x)$, so we set $f(x)=x+2 x^{2} \sin (1 / x)$.
- Then $f^{\prime}(x)=1+4 x \sin (1 / x)-2 \cos (1 / x)$, and when x is close to zero, then will oscillate between 3 and -1 , so f^{\prime} will be both positive and negative in every neighborhood of 0 .

UiO : University of Oslo
Point of inflection

UiO : University of Oslo

- We say that c is a point of inflection if f has a tangent line at c and $f^{\prime \prime}$ changes sign at c. (Some people only require that f should be continuous at c.)

UiO : University of Oslo

- We say that c is a point of inflection if f has a tangent line at c and $f^{\prime \prime}$ changes sign at c. (Some people only require that f should be continuous at c.)
- Let us consider some examples.
- We say that c is a point of inflection if f has a tangent line at c and $f^{\prime \prime}$ changes sign at c. (Some people only require that f should be continuous at c.)
- Let us consider some examples.
- $f(x)=x^{3}$ has $f^{\prime}(0)=0$, but 0 is not an extremum, but a point of inflection.

UiO : University of Oslo

- We say that c is a point of inflection if f has a tangent line at c and $f^{\prime \prime}$ changes sign at c. (Some people only require that f should be continuous at c.)
- Let us consider some examples.
- $f(x)=x^{3}$ has $f^{\prime}(0)=0$, but 0 is not an extremum, but a point of inflection.
- $f(x)=x^{3}+x$ shows that f^{\prime} does not have to be 0 at a point of inflection.

UiO : University of Oslo
Point of inflection 2

- $f(x)=x^{1 / 3}$ has a point of inflection at 0 , has a tangent line at 0 , but $f^{\prime}(0)$ and $f^{\prime \prime}(0)$ do not exist. (Vertical tangent line. Just bend a bit, and both derivatives will exist.)

UiO : University of Oslo

Point of inflection 2

- $f(x)=x^{1 / 3}$ has a point of inflection at 0 , has a tangent line at 0 , but $f^{\prime}(0)$ and $f^{\prime \prime}(0)$ do not exist. (Vertical tangent line. Just bend a bit, and both derivatives will exist.)

$$
f(x)=\left\{\begin{array}{l}
x^{2} \text { if } x \geq 0 \\
-x^{2} \text { if } x<0
\end{array}\right.
$$

has a point of inflection at 0 , and $f^{\prime}(0)$ exists, but $f^{\prime \prime}(0)$ does not exist. (First derivatives match, so we get a tangent line, but second derivatives do not match.)

UiO : University of Oslo

Point of inflection 2

- $f(x)=x^{1 / 3}$ has a point of inflection at 0 , has a tangent line at 0 , but $f^{\prime}(0)$ and $f^{\prime \prime}(0)$ do not exist. (Vertical tangent line. Just bend a bit, and both derivatives will exist.)

$$
f(x)=\left\{\begin{array}{l}
x^{2} \text { if } x \geq 0, \\
-x^{2} \text { if } x<0
\end{array}\right.
$$

has a point of inflection at 0 , and $f^{\prime}(0)$ exists, but $f^{\prime \prime}(0)$ does not exist. (First derivatives match, so we get a tangent line, but second derivatives do not match.)

$$
f(x)=\left\{\begin{array}{l}
x^{2}+x \text { if } x \geq 0, \\
-x^{2}-2 x \text { if } x<0
\end{array}\right.
$$

does not have a tangent line at 0 , since the first derivatives do not match. However, the second derivative changes sign at 0 . Is this a point of inflection? I have chosen to not include this, but some people do.

UiO : University of Oslo
Point of inflection 3

1. If c is a point of inflection and $f^{\prime \prime}(c)$ exists, then $f^{\prime \prime}(c)=0$.

UiO : University of Oslo
 Point of inflection 3

1. If c is a point of inflection and $f^{\prime \prime}(c)$ exists, then $f^{\prime \prime}(c)=0$.
2. If c is a point of inflection, then c is an isolated extremum of f^{\prime}.

UiO : University of Oslo
 Point of inflection 3

1. If c is a point of inflection and $f^{\prime \prime}(c)$ exists, then $f^{\prime \prime}(c)=0$.
2. If c is a point of inflection, then c is an isolated extremum of f^{\prime}.
3. If c is a point of inflection, then the curve lies on different sides of the tangent line at c.

UiO : University of Oslo
Point of inflection 4

- Proof of 3: We use MVT go get x_{1} between c and x with

$$
\frac{f(x)-f(c)}{x-c}=f^{\prime}\left(x_{1}\right)
$$

or

$$
f(x)=f(c)+f^{\prime}\left(x_{1}\right)(x-c)
$$

Point of inflection 4

- Proof of 3: We use MVT go get x_{1} between c and x with

$$
\frac{f(x)-f(c)}{x-c}=f^{\prime}\left(x_{1}\right)
$$

or

$$
f(x)=f(c)+f^{\prime}\left(x_{1}\right)(x-c)
$$

- We now use MVT again to get x_{2} between c and x_{1} with

$$
\frac{f^{\prime}\left(x_{1}\right)-f^{\prime}(c)}{x_{1}-c}=f^{\prime \prime}\left(x_{2}\right)
$$

or

$$
f^{\prime}\left(x_{1}\right)=f^{\prime}(c)+f^{\prime \prime}\left(x_{2}\right)\left(x_{1}-c\right)
$$

UiO : University of Oslo

Point of inflection 4

- Proof of 3: We use MVT go get x_{1} between c and x with

$$
\frac{f(x)-f(c)}{x-c}=f^{\prime}\left(x_{1}\right)
$$

or

$$
f(x)=f(c)+f^{\prime}\left(x_{1}\right)(x-c)
$$

- We now use MVT again to get x_{2} between c and x_{1} with

$$
\frac{f^{\prime}\left(x_{1}\right)-f^{\prime}(c)}{x_{1}-c}=f^{\prime \prime}\left(x_{2}\right)
$$

or

$$
f^{\prime}\left(x_{1}\right)=f^{\prime}(c)+f^{\prime \prime}\left(x_{2}\right)\left(x_{1}-c\right)
$$

- Combining this, we get

$$
\begin{aligned}
f(x) & =f(c)+f^{\prime}\left(x_{1}\right)(x-c) \\
& =f(c)+f^{\prime}(c)(x-c)+f^{\prime \prime}\left(x_{2}\right)(x-c)\left(x_{1}-c\right)
\end{aligned}
$$

UiO : University of Oslo
 Point of inflection 5

- The tangent line to $f(x)$ at c is $t(x)=f(c)+f^{\prime}(c)(x-c)$, so the distance between f and the tangent is $f^{\prime}\left(x_{2}\right)(x-c)\left(x_{1}-c\right)$.

UiO : University of Oslo
 Point of inflection 5

- The tangent line to $f(x)$ at c is $t(x)=f(c)+f^{\prime}(c)(x-c)$, so the distance between f and the tangent is $f^{\prime}\left(x_{2}\right)(x-c)\left(x_{1}-c\right)$.
- Since $\left(x_{1}-c\right)$ and $\left(x_{1}-c\right)$ have the same sign, their product is positive. But $f^{\prime \prime}(x)$ changes sign at c , so $f(x)$ will lie on different sides of the tangent at c.
- Converse to 1 is false: $f(x)=x^{4}$ has $f^{\prime \prime}(0)=0$, but $f^{\prime \prime}(x) \geq 0$.

UiO : University of Oslo
 Point of inflection 6

- Converse to 1 is false: $f(x)=x^{4}$ has $f^{\prime \prime}(0)=0$, but $f^{\prime \prime}(x) \geq 0$.
- Converse to 2 is false: $f(x)=x^{3}+x^{4} \sin (1 / x)$ has

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2}-x^{2} \cos (1 / x)+4 x^{3} \sin (1 / x) \\
& =x^{2}(3-\cos (1 / x)+4 x \sin (1 / x) \geq 0
\end{aligned}
$$

in a neighborhood of 0 , so 0 is an isolated minimum of $f^{\prime}(x)$. We have $f^{\prime \prime}(0)=0$, but
$f^{\prime \prime}(x)=6 x-\sin (1 / x)-6 x \cos (1 / x)+12 x^{2} \sin (1 / x)$ does not change sign.

UiO : University of Oslo
 Point of inflection 6

- Converse to 1 is false: $f(x)=x^{4}$ has $f^{\prime \prime}(0)=0$, but $f^{\prime \prime}(x) \geq 0$.
- Converse to 2 is false: $f(x)=x^{3}+x^{4} \sin (1 / x)$ has

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2}-x^{2} \cos (1 / x)+4 x^{3} \sin (1 / x) \\
& =x^{2}(3-\cos (1 / x)+4 x \sin (1 / x) \geq 0
\end{aligned}
$$

in a neighborhood of 0 , so 0 is an isolated minimum of $f^{\prime}(x)$. We have $f^{\prime \prime}(0)=0$, but
$f^{\prime \prime}(x)=6 x-\sin (1 / x)-6 x \cos (1 / x)+12 x^{2} \sin (1 / x)$ does not change sign.

UiO : University of Oslo
Point of inflection 7

UiO : University of Oslo
 Point of inflection 7

- We need to "integrate" the example $2 x^{2}+x^{2} \sin (1 / x)$. Since the derivative of $1 / x$ is $-1 / x^{2}$, we try

$$
\begin{aligned}
f(x) & =x^{3}+x^{4} \sin (1 / x) \\
f^{\prime}(x) & =3 x^{2}-x^{2} \cos (1 / x)+4 x^{3} \sin (1 / x) \\
& =x^{2}(3-\cos (1 / x)+4 x \sin (1 / x))
\end{aligned}
$$

- We need to "integrate" the example $2 x^{2}+x^{2} \sin (1 / x)$. Since the derivative of $1 / x$ is $-1 / x^{2}$, we try

$$
\begin{aligned}
f(x) & =x^{3}+x^{4} \sin (1 / x) \\
f^{\prime}(x) & =3 x^{2}-x^{2} \cos (1 / x)+4 x^{3} \sin (1 / x) \\
& =x^{2}(3-\cos (1 / x)+4 x \sin (1 / x))
\end{aligned}
$$

- The first two terms give us the shape we want, and the last terms is so small that we can ignore it.

UiO : University of Oslo
 Point of inflection 8

- Converse to 3 is false: $f(x)=x^{3}+1 / 2 x^{3} \sin (1 / x)=x^{3}(1+1 / 2 \sin (1 / x))$ lies below the tangent $(y=0)$ on one side and above the tangent on another, but
$f^{\prime \prime}(x)=6 x+3 x \sin (1 / x)-\cos (1 / x)-1 / 2(1 / x) \sin (1 / x)$ does not change sign, since when x is small, the last term will be oscillate wildly.

UiO : University of Oslo
 Point of inflection 8

- Converse to 3 is false:
$f(x)=x^{3}+1 / 2 x^{3} \sin (1 / x)=x^{3}(1+1 / 2 \sin (1 / x))$ lies below the tangent $(y=0)$ on one side and above the tangent on another, but
$f^{\prime \prime}(x)=6 x+3 x \sin (1 / x)-\cos (1 / x)-1 / 2(1 / x) \sin (1 / x)$ does not change sign, since when x is small, the last term will be oscillate wildly.
- The cubic terms gives the desired shape of the curve, and since the derivative of $1 / x$ is $-1 / x^{2}$, we will get a term of the form $(1 / x) \sin (1 / x)$ in $f^{\prime \prime}(x)$, which will make it oscillate wildly.

UiO : University of Oslo
 Point of inflection 8

- Converse to 3 is false:
$f(x)=x^{3}+1 / 2 x^{3} \sin (1 / x)=x^{3}(1+1 / 2 \sin (1 / x))$ lies below the tangent $(y=0)$ on one side and above the tangent on another, but
$f^{\prime \prime}(x)=6 x+3 x \sin (1 / x)-\cos (1 / x)-1 / 2(1 / x) \sin (1 / x)$ does not change sign, since when x is small, the last term will be oscillate wildly.
- The cubic terms gives the desired shape of the curve, and since the derivative of $1 / x$ is $-1 / x^{2}$, we will get a term of the form $(1 / x) \sin (1 / x)$ in $f^{\prime \prime}(x)$, which will make it oscillate wildly.

